#
|
Abstract Category
|
Title
|
Authors
|
Affiliations
|
Keywords
|
O35
|
Cellular Therapy Approaches
|
The transcription factor Myb enhances CD8+ T cell stemness and polyfunctionality to promote curative antitumor immunity
|
Sanjivan Gautam1, Yun Ji1, Wei Zhu2, Jessica Fioravanti1, Jinhui Hu1, Neal Lacey1, James D Hocker1, John Le Gall1, Nga Voong1, William G Telford1, Philip Brohaun3, Avinash Bhandoola1, Hai-Hui Xue4, Rahul Roychoudhuri5, Nicholas P Restifo1, Brandon Higgs3, Timothy P Bender6, Luca Gattinoni1
|
1University of California 2University of Utah 3Providence Portland Medical Center 4NanoString Technologies, Inc. 5OncoSec Medical Incorporated
|
Adoptive immunotherapy|T cell
|
O36
|
Clinical Trials (Completed)
|
First in human study with the CD40 agonistic monoclonal antibody APX005M in subjects with solid tumors
|
Melissa Johnson1 Marwan Fakih2, Johanna Bendell1, David Bajor3, Mihaela Cristea2, Thomas Tremblay4, Ovid Trifan4, Robert Vonderheide5
|
1Sarah Cannon Research Institute/Tennessee Oncology 2City of Hope 3Case Western Reserve University School of Medicine 4Apexigen, Inc. 5Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania
|
Antigen presenting cells|Dendritic cell | Immune monitoring | Antibody | B cell | Clinical trial | Cytokine | Monocyte/Macrophage | T cell
|
O37
|
Clinical Trials (In Progress)
|
Nivolumab in mismatch-repair deficient (MMR-d) cancers: NCI-MATCH Trial (Molecular Analysis for Therapy Choice) arm Z1D preliminary results
|
Nilofer Azad1, Michael Overman2, Robert Gray3, Jonathan Schoenfeld4, Carlos Arteaga5, Brent Coffey6, David Patton7, Shuli Li8, Lisa McShane7, Larry Rubenstein7, Lyndsay Harris7, Robert Comis9, Jeffrey Abrams10, Paul M. Williams10, Edith Mitchell11, James Zweibel10, Elad Sharon7, Howard Streicher7, Peter J. Dwyer12, Stanley Hamilton2, Barbara Conley7, Alice P. Chen13, Keith Flaherty14
|
1Johns Hopkins University 2MD Anderson 3Dana Farber Institute 4Brighan and Women's Cancer Center 5Vanderbilt 6National Institute of Health 7NCI 8Harvard 9ECOG-ACRIN 10NIH 11Thomas Jefferson University 12Universtiy of Pennsylvania 13DTC National Cancer Institute 14Massachusetts General Hospital
|
Biomarkers|Clinical study |Neoantigens | Clinical trial | Solid tumors
|
O38
|
Clinical Trials (In Progress)
|
Nivolumab + Ipilimumab (N+I) vs Sunitinib (S) for Treatment-Naïve Advanced or Metastatic Renal Cell Carcinoma (aRCC): Results From CheckMate 214, including Overall Survival by Subgroups
|
Robert J. Motzer1, Nizar M. Tannir2, David F. McDermott3, Osvaldo Arén Frontera4, Bohuslav Melichar5, Elizabeth R. Plimack6, Philippe Barthelemy7, Saby George8, Victoria Neiman9, Camillo Porta10, Toni K. Choueiri11, Thomas Powles12, Frede Donskov13, Pamela Salman14, Christian K. Kollmannsberger15, Brian Rini16, Sabeen Mekan17, M. Brent McHenry17, Megan Wind-Rotolo17, Hans J. Hammers18, Bernard Escudier19
|
1Memorial Sloan Kettering Cancer Center 2University of Texas, MD Anderson Cancer Center Hospital 3Beth Israel Deaconess Medical Center, Dana-Farber/Harvard Cancer Center 4Centro Internacional de Estudios Clinicos 5Palacky University, and University Hospital Olomouc 6Fox Chase Cancer Center 7Hôpitaux Universitaires de Strasbourg 8Roswell Park Cancer Institute 9Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel, and Tel Aviv University 10IRCCS San Matteo University Hospital Foundation 11Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School 12Barts Cancer Institute, Cancer Research UK Experimental Cancer Medicine Centre, Queen Mary University of London, Royal Free NHS Trust 13Aarhus University Hospital 14Fundación Arturo López Pérez 15British Columbia Cancer Agency 16Cleveland Clinic Taussig Cancer Institute 17Bristol-Myers Squibb 18Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins 19Gustave Roussy
|
Checkpoint blockade|Clinical study |Target therapy | Clinical trial | Solid tumors
|
O39
|
Clinical Trials (In Progress)
|
Phase I study of E7046, a novel PGE2 receptor type 4 inhibitor, in patients with advanced solid tumors with high myeloid infiltrate: effects on myeloid- and T-lymphoid cell-mediated immunosuppression
|
Aurelien Marabelle1, Aparna Parikh2, Geoffrey Shapiro3, Andrea Vargas1, Aung Naing4, Funda Meric-Bernstam4, Larisa Reyderman5, Xingfeng Bao5, Terri Binder5, Min Ren5, Amy Siu5, Lucy Xu5, Mingjie Liu5, Satish Dayal5, Vijay Bhagawati-Prasad5, Ilian Tchakov5, Takashi Owa5, Chean Eng. Ooi5, David Sanghyun Hong4
|
1Gustave Roussy Institute 2Massachusetts General Hospital 3Dana-Farber Cancer Institute 4The University of Texas MD Anderson Cancer Center 5Eisai Inc.
|
Immune contexture | Myeloid cells | Tumor microenvironment | Biomarkers | Clinical trial | Monocyte/Macrophage | Tumor infiltrating lymphocytes (TILs)
|
O40
|
Clinical Trials (In Progress)
|
Interim Safety Analysis of Cancer Immunotherapy Trials Network – 12 (CITN-12): A Phase 1 Study of Pembrolizumab in Patients with HIV and Relapsed, Refractory or Disseminated Malignancies
|
Thomas S Uldrick1, Priscila H Gonçalves1, Steven P Fling2, Karen Aleman1, Brinda Emu3, Marc S Ernstoff4, Ashley Jackson4, Judith Kaiser2, Holbrook E Kohrt*5, Andreanne Lacroix2, Matthew Lindsley1, Lisa M Lundgren2, Kathryn Lurain1, Matthew Madura3, James S Outland6, Chris Parsons6, Elad Sharon1, Robert Yarchoan1, Martin A “Mac” Cheever2
|
1National Cancer Institute 2Fred Hutchinson Cancer Research Center 3Yale University 4Roswell Park Cancer Institute 5Stanford University 6Louisiana State University Health Science Center
|
Checkpoint blockade | Clinical study | Leukemia/Lymphoma| Clinical trial | Solid Tumor
|
O41
|
Combination Therapy (IO/IO, IO/Standard of Care, IO/Other)
|
Preliminary antitumor and immunomodulatory activity of BMS-986205, an optimized indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor, in combination with nivolumab in patients with advanced cancers
|
Jason J. Luke1, Karen Gelmon2, Russell K. Pachynski3, Jayesh Desai4, Victor Moreno5, Josep M. Tabernero6, Carlos A. Gomez-Roca7, Quincy Chu8, Paul Basciano9, Penny Phillips9, Li Zhu9, Zhaohui Liu9, Lillian L. Siu1
|
1University of Chicago Medical Center 2University of British Columbia, BC Cancer Agency 3Washington University School of Medicine 4Peter MacCallum Cancer Centre and Royal Melbourne Hospital 5START Madrid-FJD, Hospital Universitario Fundación Jiménez Díaz 6Vall d’Hebron University Hospital 7Institut Universitaire du Cancer, Oncopole 8Cross Cancer Institute, University of Alberta/Alberta Health Services 9Bristol-Myers Squibb 10Princess Margaret Cancer Centre
|
Regulatory T cell (Treg) | Tumor microenvironment | Biomarkers| Checkpoint blockade | Coinhibition | Targeted therapy | Clinical trial | Immune suppression | Metabolism | T cell
|
O42
|
Combination Therapy (IO/IO, IO/Standard of Care, IO/Other)
|
First-in-human phase 1 dose escalation and expansion of a novel combination, anti–CSF-1 receptor (cabiralizumab) plus anti–PD-1 (nivolumab), in patients with advanced solid tumors
|
Zev Wainberg1, Sarina Piha-Paul2, Jason Luke3, Edward Kim4, John Thompson5, Carolyn Britten6, Jennifer Johnson7, Nicklas Pfanzelter8, Michael Gordon9, Drew Rasco10, F. Stephen Hodi11, Amy Weise12, Sandeep Inamdar13, Serena Perna14, Christy Ma13, Janine Powers13, Yeonju Lee13, Majid Ghoddusi13, Michael Carleton14, Hong Xiang14, Lei Zhou13, Helen Collins13, James Lee15
|
1UCLA School of Medicine 2The University of Texas MD Anderson Cancer Center 3The University of Chicago Medicine 4UC Davis Comprehensive Cancer Center 5Seattle Cancer Center Alliance 6Medical University of South Carolina 7Thomas Jefferson University Hospital 8Rush University Medical Center 9HonorHealth Scottsdale Shea Medical Center 10South Texas Accelerated Research Therapeutics 11Dana-Farber Cancer Institute 12Karmanos Cancer Center 13FivePrime Therapeutics 14 Bristol Myers Squibb 15University of Pittsburg Medical Center
|
Myeloid cells | Tumor microenvironment | Biomarkers | Checkpoint blockade | Coinhibtion | Targeted therapy | Clinical trial | Immune suppression | Monocyte/Macrophage | T cell
|
O43
|
Tumor Microenvironment (Mechanisms and Therapies)
|
Monotherapy dose escalation clinical and translational data from first-in-human study in advanced solid tumors of IPI-549, an oral, selective, PI3K-gamma inhibitor targeting tumor macrophages
|
David Hong1, Anthony Tolcher2, Ryan Sullivan3, Geoffrey Shapiro4, Bartosz Chmielowski5, Antoni Ribas5, Les Brail6, Joseph Pearlberg6, Suresh Mahabhashyam6, Lucy Lee6, Claudio Dansky Ullmann6, Brenda O'Connell6, Jeffery Kutok6, Michael Postow7, Jedd Wolchok7
|
1 Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center 2 Department of Clinical Research, South Texas Accelerated Research Therapeutics (START)3 Department of Hematology/Oncology 4 Department of Medical Oncology and Early Drug Development Center, Dana-Farber Cancer Institute 5 Department of Hematology and Oncology, University of California6 Infinity Pharmaceuticals, Inc. 7 Department of Melanoma and Immunotherapeutics Service, Memorial Sloan Kettering Cancer Center
|
Myeloid cells | Tumor microenvironment | Clinical study |MDSC | Targeted therapy | Chemokine | Cytokine | Immune suppression | Monocyte/Macrophage | Solid tumors
|
P509
|
Biomarkers and Immune Monitoring
|
Modelling oscillatory human immune system dynamics of point-of-care biomarkers for targeting/ sequencing vaccine immuno-chemotherapy in advanced melanoma
|
Brendon Coventry1, Carrie Cooper1, Mohsen Dorraki1, Andrew Allison1, Azhar Iqbal1, Derek Abbott1
|
1University of Adelaide
|
Immune monitoring | Clinical study | Biomarkers | Clinical trial | Vaccine
|
P510
|
Biomarkers and Immune Monitoring
|
Multitumor profiling of lymphocyte activation gene 3 (LAG-3) and association with immune cell phenotypes
|
Robin Edwards1, Cyrus Hedvat1, John Cogswell1, Darren Locke1, George Lee1, Vipul Baxi1, Patrik Vitazka1, Peter Szabo1, Chelsea Jin1, Dimple Pandya1, Keyur Desai1, Roland Meier1, Matt Maurer1, Donald Jackson1, Petra B Ross-MacDonald1, Megan Wind-Rotolo1, Abdel Saci1, Parminder Mankoo1, Jean-Marie Bruey1, Christopher Harbison1, Mark Selby1, Alan Korman1, Kent Thudium1, Riyue Bao2, Janis M. Taube3, Jason Luke2
|
1Bristol-Myers Squibb 2University of Chicago Medical Center 3Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center and Bloomberg-Kimmel Institute for Cancer Immunotherapy
|
Biomarkers | Checkpoint blockade | Gene expression | Immune suppression | Regulatory T cell (Treg) | T cell | Tumor microenvironment | Tumor stroma
|
P511
|
Biomarkers and Immune Monitoring
|
Evaluating immune responses of patients receiving the DPV-001 cancer vaccine
|
Christopher Paustian1, Yoshinobu Koguchi2, Adi Mehta3, Fridtjof Lund-Johansen3, Sam Bookhardt1, Purvish Patel4, Danielle Svancara4, Tarsem Moudgil2, Christopher Dubay2, William Redmond2, Carlo Bifulco5, Kyle Happel2, Brian Boulmay5, Augusto Ochoa5, Brenda Fisher2, Eileen Mederos5, Hong Ming Hu1, Traci Hilton1, Bernard Fox1, Walter Urba2, Rachel Sanborn2
|
1UbiVac 2Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Cancer Center 3Oslo University Hospital Rikshospitalet 3Oslo University Hospital, Rikshospitalet 4Quanterix 5LSUHSC School of Medicine
|
Biomarkers | Immune monitoring | Antibody | Clinical trial | Immune adjuvant | Vaccine | Proteomics | Tumor antigens | T cell | B cell
|
P512
|
Biomarkers and Immune Monitoring
|
Deep immunoprofiling of rare T-cell populations from clinical samples
|
Mark Knappenberger1, Sri Krishna1, Kit Fuhrman2, Cheryl Tan2, Douglas Hinerfeld2, Karen S. Anderson1
|
1The Biodesign Institute at Arizona State University 2Nanostring Technologies, Inc.
|
Bioinformatics | Proteomics | Gene expression | T cell | Immune tolerance
|
P513
|
Cancer Vaccines
|
Sustained complete response to nivolumab in a HPV16+ head and neck cancer patient after treatment with MEDI0457 (INO-3112), a DNA immunotherapy targeting HPV16/18
|
Charu Aggarwal1, Roger Cohen1, Matthew Morrow2, Kimberly Kraynyak2, Dawson Knoblock2, Joshua Bauml1, Gregory Weinstein1, Jian Yan2, Drishty Mangrolia2, Sandra Oyola2, Susan Duff2, David Weiner3, Ildi Csiki2, Mark Bagarazzi2
|
1Perelman School of Medicine at the University of Pennsylvania 2Inovio Pharmaceuticals3Wistar Institute
|
Targeted therapy | Clinical study | Clinical trial | T cell | Solid tumors | Vaccine
|
P514
|
Cellular Therapy Approaches
|
Utilizing T-cell activation signals 1, 2 and 3 for tumor-infiltrating lymphocytes (TIL) expansion: the advantage over the sole use of interleukin-2 in cutaneous and uveal melanoma
|
Marie-Andree Forget1, Rene J. Tavera1, Young Uk Kim1, Ankit Bhatta1, Donastas Sakellariou-Thompson1, Caitlin A. Creasy1, Orenthial J. Fulbright1, Renjith Ramachandran1, Shawne T. Thorson1, Esteban Flores1, Arely Wahl1, Sapna P. Patel1, Patrick Hwu1, Rodabe N. Amaria1, Chantale Bernatchez1, Cara Haymaker1
|
1MDACC
|
Adoptive immunotherapy | Costimulation | Clinical trial | Tumor infiltrating lymphocytes (TILs)
|
P515
|
Cellular Therapy Approaches
|
Novel cryopreserved tumor infiltrating lymphocytes (LN-144) administered to patients with metastatic melanoma demonstrates efficacy and tolerability in a multicenter Phase 2 clinical trial
|
Amod Sarnaik1, Jason Chesney2, Harriet Kluger3, Brendan Curti4, Omid Hamid5, Jose Lutzky6, Maria Fardis7, Igor Gorbatchevsky7, Sam Suzuki7, Bente Larsen7, Nancy L. Samberg7, John Kirkwood8
|
1Moffit Cancer Center 2James Graham Brown Cancer Center 3Yale Cancer Center 4Earle A. Chiles Research Institute, Providence Cancer Center 5The Angeles Clinic and Research Institute 6Mount Sinai Comprehensive Cancer Center 7Iovance Biotherapeutics, Inc. 8University of Pittsburgh Medical Center, Hillman Cancer Center
|
Adoptive immunotherapy | Clincial Study | Regulatory T cell (Treg) | Tumor microenvironment | Tumor Antigens | Clinical Trial| Solid tumors|Tumor infiltrating lymphocytes (TILs)
|
P516
|
Cellular Therapy Approaches
|
An evaluation of autologous tumor-reactive TIL generation from head and neck squamous cell cancers
|
Tarsem Moudgil2 , Christopher Paustian3, Zipei Feng2, Ashish Patel1, Carmen-Ballesteros Merino2, Shawn Jenson2, Rom Leidner2,4, Christopher Dubay2, Traci Hilton3, Brenden Curti2, Hong-Ming Hu2, Walter Urba2, Carlo Bifulco2, Bernard Fox2,3,4, Bryan Bell2
|
1PPMC 2Robert W Franz Cancer Center, Earle A. Chiles Research Institute 3UbiVac 4Providence Cancer Center
|
Adoptive immunotherapy | Tumor microenvironment | Biomarkers | Tumor antigens | Cytokine | T cell | Tumor infiltrating lymphocytes (TILs)
|
P517
|
Cellular Therapy Approaches
|
Regional intraventricular delivery of HER2-specific CAR T cells targets breast cancer metastasis to the brain
|
Saul Priceman1, Dileshni Tilakawardane1, Brook Jeang1, John Murad1, Anthony Park1, Wen-Chung Chang1, Julie Ostberg1, Josh Neman2, Rahul Jandial1, Jana Portnow1, Stephen Forman1, Christine Brown1
|
1City of Hope National Medical Center 2University of Southern California
|
Adoptive immunotherapy | T cell | Solid tumors
|
P518
|
Combination Therapy (IO/IO, IO/Standard of Care, IO/Other)
|
Generation of non-reprogrammable, dysfunctional CD8+ T cells following anti-PD-1 therapy in the presence of low antigen priming is a cause of failure of the treatment
|
Vivek Verma1, Rajeev Shrimali1, Shamim Ahmad1, Winjie Dai1, Hua Wang1, Sumin Lu1, Pankaj Gaur1, Scott A Hammond2, Mikayel Mkrtichyan1, John E Janik1, Seema Gupta1, Samir N Khleif1
|
1Augusta University 2MedImmune LLC
|
Tumor microenvironment | Vaccine | Solid tumors | T cell | Costimulation
|
P519
|
Emerging Models and Imaging
|
Artificial intelligence augmented phenotypic screens rapidly reveal novel macrophage biology
|
Viswa Colluru1
|
1Recursion Pharmaceuticals
|
Myeloid cells | Systems biology | Tumor evasion | Monocyte/Macrophage | Immune suppression | Bioinformatics
|
P520
|
Mechanisms of Efficacy or Toxicity
|
Tuberculosis following PD-1 blockade in a patient with merkel cell carcinoma (MCC): coincidence or causality?
|
Elad Sharon1, Daniel Barber2, Ragini Kudchadkar3, Steven Fling4, Tracey Day5, David Ashkin6, Lisa Lundgren4, Martin Cheever4, Paul Nghiem7, Shunsuke Sakai2
|
1National Cancer Institute 2National Institute of Allergy and Infectious Diseases 3Emory University School of Medicine 4Fred Hutchinson Cancer Research Center 5Infectious Disease Research Institute 6University of Florida College of Medicine 7University of Washington
|
T cell | Immune toxicity | Clinical study | Checkpoint blockade | Antibody | Clinical trial | Autoimmunity
|
P521
|
Mechanisms of Resistance to Immunotherapy
|
Imprime PGG, a novel phase 2 immunotherapeutic, enhances the anti-tumor activity of checkpoint inhibitors (CPI) and suppresses CPI-induced Indoleamine 2,3-dioxygenase (IDO) expression
|
Xiaohong Qiu1, Anissa SH Chan1, Adria B. Jonas1, Michael E. Danielson1, Nadine R. Ottoson1, Kyle S. Michel1, Steven M. Leonardo1, Ross B. Fulton1, Kathryn Fraser1, Takashi O. Kangas1, Mark Uhlik1, Jeremy R. Graff1, Nandita Bose1
|
1Biothera Pharmaceuticals, Inc.
|
Antibody | Checkpoint blockade | Gene expression | Immune suppression | Myeloid cells | Tumor microenvironment | Clinical trial | Tumor antigens | Monocyte/Macrophage | T cell
|
P522
|
Microbiome
|
Clostridium species control primary liver cancer and liver metastasis via bile acids/CXCL16/CXCR6 mediated NKT cell immunity
|
Chi Ma1, Miaojun Han1, Bernd Heinrich1, Qiong Fu1, Qianfei Zhang1, Masaki Terabe1, Jay Berzofsky1, Xin Wei Wang1, Giorgio Trinchieri1, Tim Greten1
|
1NCI
|
NK/NK T cell | Metabolism | Microbiome
|
P523
|
Oncogenetics and Immunogenomics
|
Gene expression profiling of dermatologic toxicities from immune checkpoint therapy
|
Jonathan Curry1, Michael Tetzlaff1, Alexandre Reuben1, Robert Szczepaniak1, Saira George1, Carlos Torres-Cabala1, Daniel Johnson1, Victor Prieto1, Adi Diab1
|
1MD Anderson Cancer Center
|
Immune toxicity
|
P524
|
Oncolytic Viruses and Intratumoral Therapies
|
Clinical and biomarker analyses of a phase II study of intratumoral tavokinogene telseplasmid (pIL-12) plus pembrolizumab in stage III/IV melanoma patients predicted to not respond to anti-PD-1
|
Alain P. Algazi1, Katy K. Tsai1, Michael D. Rosenblum1, Robert Andtbacka2, Carmen Ballesteros-Merino3, Shawn Jensen3, Carlo B. Bifulco3, Bernard A. Fox3, SuFey Ong4, Alessandra Cesano4, Joseph Beechem4, Chris Twitty5, Jean S. Campbell5, Erica Browning5, Reneta Talia5, Shawna A. Shirley5, Mai H. Le5, Robert H. Pierce5, Sharron Gargosky5, Adil I. Daud1
|
1University of California 2University of Utah 3Providence Portland Medical Center 4NanoString Technologies, Inc. 5OncoSec Medical Incorporated
|
Tumor microenvironment | Biomarkers | Checkpoint blockade | Clinical study | Immune monitoring | Clinical trial | Cytokine | Tumor infiltrating lymphocytes (TILs) | Gene expression | Tumor stroma
|
P525
|
Tumor Microenvironment (Mechanisms and Therapies)
|
Exploring tumor microenvironment and human bone marrow stromal cells by single cell sequencing
|
Shutong Liu1, Ping Jin1, Yindong Zhao1, Jiaqiang Ren1, Steven Highfill1, Jinguo Chen1, Rongye Shi1, Hui Liu1, David Stroncek1
|
1National Institutes of Health
|
Immune tolerance | Inflammation | Tumor microenvironment | Immune suppression | Gene expression
|