#
|
Title
|
Authors
|
Affiliations
|
Keywords
|
P255
|
Depleting blood arginine with AEB1102 (Pegzilarginase) exerts additive anti-tumor and synergistic survival benefits when combined with immunomodulators of the PD-1 pathway
|
Giulia Agnello1, Mark Badeaux1, Susan Alters1, David Lowe1, Scott Rowlinson1
|
1Aeglea BioTherapeutics, Inc., Austin, TX, USA
|
Tumor microenvironment | Checkpoint blockade | Metabolism
|
P256
|
G100 and ZVex®-based combination immunotherapy induces near complete regression of established glioma tumors in mice
|
Tina C. Albershardt1, Jordan E. Krull1, Reice D. James1, Peter Berglund1, Jan ter Meulen1
|
1Immune Design, Seattle, WA, USA
|
Tumor microenvironment | Tumor antigens | Vaccine | Targeted therapy | Antigen presenting cells
|
P257
|
Phase II basket study of olaparib and durvalumab: Biomarker analysis in germline BRCA-mutated (gBRCm) HER2-negative metastatic breast cancer (MBC) and relapsed small-cell lung cancer (SCLC) patients
|
Helen Angell1, Vidalba Rocher Ros1, Nathan Standifer2, Zhongwu Lai1, Christopher Gresty1, Jean-Pierre Delord3, Maja De Jonge4, Sophie Postel-Vinay5, Antoine Italiano6, Matthew G Krebs7, Bella Kaufman8, Yeon Hee Park9, Susan Domchek10, Pia Herbolsheimer11, Darren Hodgson1
|
1AstraZeneca, Cambridge, United Kingdom 2MedImmune, Mountain View, CA, USA 3Institut Claudius Regaud-Oncopole, Toulouse, France 4Erasmus MC Cancer Institute, Rotterdam, Netherlands 5Gustave Roussy Cancer Campus, Villejuif, France 6Institut Bergonié, Bordeaux, France 7The University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom 8Sheba Medical Centre, Ramat Gan, Israel 9Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea 10Hospital of the University of Pennsylvania, Philadelphia, PA, USA 11AstraZeneca, Gaithersburg, MD, USA
|
Biomarkers | Clinical trial | Gene expression | Targeted therapy
|
P258
|
Resource Use and Cost Implications Associated with Treatment-free Interval Experienced on Immunotherapies
|
Michael Atkins1, Ahmad Tarhini2, Apoorva Ambavane3, David McDermott4, Komal Gupte-Singh5, Josh Weng3, Corey Ritchings5, Meredith Regan7, Agnes Benedict6, Sumati Rao5
|
1Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC, USA 2University of Pittsburgh School of Medicine and Cancer Institute, Pittsburgh, PA, USA 3Evidera, Inc., Bethesda, MD, USA 4Beth Israel Deaconess Medical Center, Boston, MA, USA 5Bristol-Myers Squibb, Princeton, NJ, USA 6Evidera, Inc., Budapest, Hungary 7Dana-Farber Cancer Institute, Boston, MA, USA
|
Checkpoint blockade | Solid tumors
|
P259
|
Pushing the accelerator and releasing the brake: testing the soluble LAG-3 protein (IMP321), an antigen presenting cell activator, together with pembrolizumab in unresectable or metastatic melanoma.
|
Victoria Atkinson1, Andrew Haydon2, Melissa Eastgate3, Amitesh Roy4, Adnan Khattak5, Christian Mueller6, Tina Dunkelmann6, Chrystelle Brignone7, Frederic Triebel7
|
1Princess Alexandra Hospital, 4102 Woolloongabba, Australia 2Alfred Hopital, 3004 Melbourne, Australia 3Royal Brisbane and Women's Hospital, 429 Herston, Australia 4Flinders Medical Centre, Bedfork Park, Australia 5Fiona Stanley Hospital, Murdoch, Australia 6Prima BioMed GmbH, Berlin, Germany 7Immutep S.A.S., Châtenay-Malabry, France
|
Antigen presenting cells | Adoptive immunotherapy | Clinical study | Checkpoint blockade | Clinical trial | Immune adjuvant | Solid tumors | Immune monitoring | Costimulation
|
P260
|
Glembatumumab Vedotin (GV), an Anti-gpNMB Antibody-Drug Conjugate (ADC), in Combination with Varlilumab (V), an Anti-CD27 Antibody, in Advanced Melanoma
|
Omid Hamid1, Anna C. Pavlick2, C. Lance Cowey3, Lowell Hart4, Douglas B. Johnson5, Jose Lutzky6, Aaron Alizadeh7, David Spigel8, Neal Rothschild9, April Salama10, Robert Weber11, Jason J. Luke12, Ying Wang13, Michael Yellin13, Yi He13, Rebecca G. Bagley13, Patrick Ott14
|
1The Angeles Clinic and Research Institute, Los Angeles, CA, USA 2New York University School of Medicine, New York, NY, USA 3Baylor University Medical Center, Dallas, TX, USA 4Florida Cancer Specialists, Fort Myers, FL, USA 5Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA 6Mount Sinai Comprehensive Cancer Center, Miami Beach, FL, USA 7Northside Hospital, Atlanta, GA, USA 8Tennessee Oncology, PLLC, Nashville, TN, USA 9Florida Cancer Specialists, West Palm Beach, FL, USA 10Duke University, Durham, NC, USA 11St. Mary's Medical Center, San Francisco, CA, USA 12University of Chicago, Chicago, IL, USA 13Celldex Therapeutics, Inc., Hampton, NJ, USA 14Dana-Farber Cancer Institute, Boston, MA, USA
|
Antibody | Checkpoint blockade | Clinical study | Clinical trial | Costimulation | Solid tumors | T cell | Targeted therapy | Tumor infiltrating lymphocytes (TILs) | Tumor antigens
|
P261
|
Molecular signatures of combination immunotherapy of prostate cancer using a Listeria-based PSA vaccine and radiation
|
Emily Bongiorno1, Trevor Baybutt1, Carla Portocarrero1, Adam Snook1, Adam Dicker1, Sandra Hayes2, Ulrich Rodeck1
|
1Thomas Jefferson University, Philadelphia, PA, USA 2Advaxis Immunotherapeutics, Inc., Princeton, NJ, USA
|
Tumor microenvironment | Checkpoint blockade | Biomarkers | Tumor infiltrating lymphocytes (TILs) | Tumor evasion | Vaccine | Radiotherapy
|
P262
|
Phosphatidylserine targeting antibody in combination with tumor radiation and immune checkpoint blockade promotes anti-tumor activity in mouse B16 melanoma
|
Sadna Budhu1, Rachel Giese1, Olivier De Henau1, Roberta Zappasodi1, Luis Felipe Campesato1, Aditi Gupta1, Christopher Barker1, Bruce Freimark2, Jedd D. Wolchok1, Taha Merghoub1
|
1Memorial Sloan Kettering Cancer Center, New York, NY, USA 2Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
|
Checkpoint blockade | Radiotherapy | Tumor infiltrating lymphocytes (TILs) | Solid tumors
|
P263
|
Preclinical development of a Vaccine-Based Immunotherapy Regimen (VBIR) that breaks immunological tolerance and induces high titer and long lived T-cell responses to a tumor-associated self-antigen
|
Helen Cho1, Risini Weeratna2, Joe Binder1, Bassel Akache2, Rajeev Nepal3, Paul Cockle4, Marianne Martinic1, Michael Dermyer1, Stanley Dai1, James Merson1, Karin Jooss4
|
1Pfizer Inc., San Diego, CA, USA 2National Research Council of Canada, Ottawa, ON, Canada 3Pfizer Canada Inc., Kirkland, QC, Canada 4Gritstone Oncology Inc., Emeryville, CA, USA
|
Immune tolerance | Tumor antigens | T cell | Vaccine | Immune monitoring | Checkpoint blockade
|
P264
|
Immune modulation by low dose sunitinib combined with a cancer vaccine based immunotherapeutic regimen provides therapeutic benefit to tumor bearing mice
|
Helen Cho1, Cindy Li1, Antonio Boccia1, Steve Burgess1, Terri Harder1, Paul Cockle2, Jim Eyles1, Marianne Martinic1, Bryan Clay1, Kam Chan1, Stanley Dai1, Michael Dermyer1, Joe Binder1, Steve Kurzyniec3, Terrina Bayone1, Joan Guo4, Robert Hollingsworth1, James Merson1, Karin Jooss2
|
1Pfizer Inc., San Diego, CA, USA 2Gritstone Oncology Inc., Emeryville, CA, USA 3Shimadzu Scientific Instruments, San Diego, CA, USA 4Moderna Therapeutics, Cambridge, MA, USA
|
Vaccine | T cell | Immune suppression | Tumor antigens | MDSC | Immune monitoring | Checkpoint blockade | Immune tolerance | Myeloid cells | Tumor microenvironment
|
P265
|
Optimizing targeted therapy and immune checkpoint blockade therapy in Kras mutant lung cancer
|
Hyejin Choi1, Jiehui Deng2, Tarik Silk1, Ann Powers1, Jonathan Boiarsky1, Taha Merghoub3, Kwok-Kin Wong2, Jedd Wolchok1
|
1MSKCC, New York, NY, USA 2New York University Langone Medical Center, New York, NY, USA 3Medicine, New York, NY, USA
|
Checkpoint blockade | Targeted therapy | T cell
|
P266
|
Significant Enhancement of Expanded Natural Killer Cells against GD2 Pediatric Solid Tumors (ST) in Combination withALT-803 (IL-15 Superagonist) and Dinutuximab
|
Yaya Chu1, Nang Kham Su1, Jeremy Rosenblum1, Hing C. Wong2, Dean A. Lee3, Mitchell S Cairo1
|
1New York Medical College, Valhalla, NY, USA 2Altor Bioscience, Miramar, FL, USA 3Nationwide Children’s Hospital, Columbus, OH, USA
|
Adoptive immunotherapy | Pediatric tumors | NK/NK T cell | Cytokine | Targeted therapy
|
P267
|
Withdrawn
|
|
|
|
P268
|
Targeting the tumor microenvironment with first-in-class Semaphorin4D MAb for combination immunotherapy.
|
Elizabeth Evans1, Holm Bussler1, Crystal Mallow1, Christine Reilly1, Sebold Torno1, Maria Scrivens1, Cathie Foster1, Alan Howell1, Leslie Balch1, John E. Leonard1, Terrence L. Fisher1, David Jenkins2, Clint Allen3, Paul Clavijo3, Siwen Hu-Lieskovan4, Antoni Ribas5, Ernest Smith1, Maurice Zauderer1
|
1Vaccinex, Rochester, NY, USA 2Tesaro, Waltham, MA, USA 3NIH/NIDCD, Bethesda, MD, USA 4UCLA, Los Angeles, CA, USA 5Vaccinex, Los Angeles, CA, USA
|
Antigen presenting cells | Immune contexture | Myeloid cells | Regulatory T cell (Treg) | Tumor microenvironment | Checkpoint blockade | MDSC | Tumor infiltrating lymphocytes (TILs) | Biomarkers | Clinical trial
|
P269
|
Epigenetic reprogramming of the tumor microenvironment increases tumor sensitivity to multivalent immunotherapy combinations with an IL-15 superagonist plus vaccine or immune checkpoint blockade
|
Kristin C. Hicks1, Karin M. Knudson1, Anthony S. Malamas1, Frank R. Jones2, Peter Ordentlich3, Shahrooz Rabizadeh4, Hing C. Wong5, James W. Hodge1, Jeffrey Schlom1, Sofia R. Gameiro1
|
1National Cancer Institute, National Institutes of Health, Bethesda, MD, USA 2Etubics Corporation, Seattle, WA, USA 3Syndax Pharmaceuticals, Inc., Waltham, MA, USA 4NantCell, LLC, Culver City, CA, USA 5Altor BioScience Corporation, Miramar, FL, USA
|
Vaccine | Antibody | Checkpoint blockade | Tumor microenvironment | Solid tumors | Tumor evasion
|
P270
|
Simultaneous PD-1 blockade is detrimental to the anti-tumor effects mediated by the agonist OX40 antibody
|
Seema Gupta1, Rajeev Shrimali2, Shamim Ahmad3, Vivek Verma1, Peng Zeng1, Sudha Ananth1, Pankaj Gaur1, Rachel Gittelman4, Erik Yusko4, Catherine Sanders4, Harlan Robins4, Scott Hammond5, John Janik1, Mikayel Mkrtichyan3, Samir Khleif1
|
1Georgia Cancer Center, Augusta University, Augusta, GA, USA 2Georgia Cancer Center, Augusta University, Dallas, TX, USA 3Georgia Cancer Center, Augusta University, South San Francisco, CA, USA 4Adaptive Biotechnologies, Seattle, WA, USA 5MedImmune LLC, Gaithersburg, MD, USA
|
Costimulation | Tumor microenvironment | Checkpoint blockade | Antibody | Tumor infiltrating lymphocytes (TILs) | Vaccine | T cell
|
P271
|
Phase 1b/2 dose-escalation study of ARRY-382, an oral inhibitor of colony-stimulating factor-1 receptor (CSF1R), in combination with pembrolizumab for treatment of patients with advanced solid tumors
|
Wael A. Harb1, Melissa L. Johnson2, Jonathan W. Goldman3, Amy Weise4, Justin A. Call5, Arkadiusz Z. Dudek6, Rene Gonzalez7, C. Lance Cowey8, Sybil Zildjian9, Kati Maharry9, Ashwin Gollerkeri9, Justin F. Gainor10
|
1Horizon Oncology Research, Inc., Lafayette, IN, USA 2Sarah Cannon Research Institute, Nashville, TN, USA 3UCLA Medical Center, Santa Monica, CA, USA 4Karmanos Cancer Institute, Detroit, MI, USA 5Utah Cancer Specialists, Salt Lake City, UT, USA 6Regions Cancer Care Center, St. Paul, MN, USA 7University of Colorado Cancer Center, Aurora, CO, USA 8Baylor Health Care System, Dallas, TX, USA 9Array BioPharma Inc., Boulder, CO, USA 10Massachusetts General Hospital, Boston, MA, USA
|
Tumor microenvironment | Targeted therapy | Clinical study | Clinical trial | Checkpoint blockade | Coinhibition | Solid tumors
|
P272
|
The anti-tumor effect of radiation therapy is enhanced with the addition of TTI-621 (SIRPαFc), an immune checkpoint inhibitor blocking the CD47 “do not eat” signal
|
Lei Cui1, Hui Chen1, Alison O'Connor1, Debbie Jin1, Jeffrey Winston1, Robert Uger1, Lisa Johnson1
|
1Trillium Therapeutics Inc., Mississauga, ON, Canada
|
Radiotherapy | Monocyte/Macrophage | Tumor microenvironment | Myeloid cells | Checkpoint blockade
|
P273
|
Pembrolizumab and afatinib for recurrent or metastatic head and neck squamous cell carcinoma
|
Hsiang-Fong Kao1, Huai-Cheng Huang1, Bin-Chi Liao1, Ruey-Long Hong1
|
1National Taiwan University Hospital, Taipei, Taiwan
|
Clinical study | Checkpoint blockade | Targeted therapy | Solid tumors
|
P274
|
Combination of NKTR-214 and radiotherapy (RT) to reverse anergy and expand tumor-specific CD8 T Cells
|
Joshua Walker1, Melissa Kasiewicz2, Michael McNamara2, Ian Hilgart-Martiszus2, Ute Hock3, Deborah Charych3, William Redmond2
|
1Oregon Health & Science University, Portland, OR, USA 2Providence Portland Medical Center, Portland, OR, USA 3Nektar Therapeutics, San Francisco, CA, USA
|
Radiotherapy | T cell | Tumor infiltrating lymphocytes (TILs) | Cytokine | Tumor antigens | Immune tolerance
|
P275
|
HARNESSING THE INNATE AND ADAPTIVE IMMUNE SYSTEM TO ERADICATE TREATED AND DISTANT UNTREATED SOLID TUMORS.
|
Saul Kivimae1, Werner Rubas1, Rhoneil Pena1, Marlene Hennessy1, Yolanda Kirksey1, Wildaliz Nieves1, Myong Lee1, Clive Law1, Kavitha Bhasi1, Phi Quach1, Janet Cetz1, John L. Langowski1, Christie Fanton1, Jode Zandro Aquino1, Zhongxu Ren1, Haiying Cai1, BoLiang Deng1, Wen Zhang1, Neel K. Anand1, Jennifer Riggs-Sauthier1, Steve Doberstein1, Jonathan Zalevsky1
|
1Nektar Therapeutics, San Francisco, CA, USA
|
Antigen presenting cells | Cytokine | Dendritic cell | Myeloid cells | Solid tumors | T cell | Tumor infiltrating lymphocytes (TILs) | Tumor antigens | TLR | Tumor microenvironment
|
P276
|
Immunoswitch particles target activation of anti-tumor CD8+ T cells to inhibit tumor growth
|
Alyssa Kosmides1, John-William Sidhom1, Andrew Fraser1, Catherine Bessell1, Jonathan Schneck1
|
1Johns Hopkins School of Medicine, Baltimore, MD, USA
|
Costimulation | Tumor microenvironment | Checkpoint blockade | Coinhibition
|
P277
|
STING agonist treatment increases response to chemotherapy and immune checkpoint blockade therapy in a syngeneic murine model of high-grade serous ovarian cancer
|
Abdi Ghaffari1, Nichole Peterson1, Kasra Khalaj1, Andrew Robinson2, Julie-Ann Francis2, Madhuri Koti1
|
1Queen's University, Kingston, ON, Canada 2Kingston Health Sciences Center, Kingston, ON, Canada
|
Chemotherapy | Biomarkers | Chemokine | Monocyte/Macrophage | Tumor infiltrating lymphocytes (TILs) | T cell | Solid tumors | Dendritic cell | Antigen presenting cells | Tumor microenvironment
|
P278
|
A Rational Combination of Standard of Care and Immunotherapy Increases Survival Against Glioblastoma
|
Erik Ladomersky1, Derek Wainwright1
|
1Northwestern University, Chicago, IL, USA
|
Checkpoint blockade | Immune suppression | Metabolism | Radiotherapy | Regulatory T cell (Treg) | T cell
|
P279
|
An oral small molecule combination therapy targeting PD-L1, VISTA and Tim-3 immune inhibitory checkpoints exhibits enhanced anti-tumor efficacy in pre-clinical models of cancer
|
Adam Lazorchak1, Troy Patterson1, Yueyun Ding1, Pottayil G. Sasikumar2, Naremaddepalli S. Sudarshan2, Nagaraj M. Gowda2, Raghuveer K. Ramachandra2, Dodheri S. Samiulla2, Mohammed Rafi2, Nagesh Gowda2, Sreenivas Adurthi2, Jiju Mani2, Rashmi Nair2, Murali Ramachandra2, David Tuck1, Timothy Wyant1
|
1Curis, Inc., Lexington, MA, USA 2Aurigene Discovery Technologies Limited, Bengaluru, India
|
Checkpoint blockade | Tumor microenvironment | Clinical study | MDSC | Immune suppression | T cell | Tumor infiltrating lymphocytes (TILs) | Tumor evasion
|
P280
|
Combination lymphoma immunotherapy using intratumoral virus-like particles containing CpG TLR9 agonist combined with checkpoint blockade
|
Caitlin Lemke-Miltner1, Sue Blackwell1, Arthur Krieg2, George Weiner1
|
1University of Iowa, Iowa City, IA, USA 2Checkmate Pharmaceuticals, Cambridge, MA, USA
|
Leukemia/Lymphoma | TLR | Tumor microenvironment | Checkpoint blockade | Tumor infiltrating lymphocytes (TILs)
|
P281
|
Treatment with a VEGFR-2 antibody results in intra-tumor immune modulation and enhances antitumor efficacy of PD-L1 blockade in syngeneic murine tumor models
|
yanxia li1, David Schaer1, Marguerita O’Mahony1, Ivan Inigo1, Qi Li1, Nelusha Amaladas1, Erik Rasmussen1, Thompson Doman2, Jason Manro2, Mary Murphy1, Macrina Francisco1, Gerald Hall1, Michael Kalos1, Ruslan Novosiadly1, Bronislaw Pytowski1
|
1Eli Lilly and Company, New York, NY, USA 2Eli Lilly and Company, Indianapolis, IN, USA
|
Antibody | Gene expression | T cell | Immune monitoring | Biomarkers | Angiogenesis | Antigen presenting cells | Tumor microenvironment
|
P282
|
Immunostimulatory CD40L/4-1BBL Gene Therapy Enhances aPD-1 Antibody Therapy in Experimental Models
|
Jessica Wenthe1, Emma Eriksson1, Ann-Charlotte Hellström1, Angelica Loskog1
|
1Uppsala University, Uppsala, Sweden
|
Costimulation | Tumor microenvironment | Checkpoint blockade | T cell | Cytokine
|
P283
|
Differential impact of chemotherapy on tumor-associated antigen-specific immunogenicity in cynomolgus macaques
|
Maria Josic1, Aaron Longworth1, Joe Binder1, Helen Cho1, Erick Gamelin1, Siradanahalli Guru1, Eugenia Kraynov1, Steve Burgess1, Bryan Clay1, Charlie Huang1, Jannine Landry1, Mark Lesch1, Cindy Wei Li1, Shangjin Li1, Pavinder Kaur1, Sophie Muscat-King1, Peter Weady1, Dan Xu1, James Merson1, Robert Hollingsworth1, Marianne Martinic1
|
1Pfizer, San Diego, CA, USA
|
Chemotherapy | Immune tolerance | Immune monitoring | Cytokine | T cell | Vaccine | Tumor antigens
|
P284
|
T cell priming by Toca 511 and 5-FC coupled with T regulatory cell depletion by αCTLA-4 synergistically enhances anti-tumor immune memory in a mouse model of glioma
|
Leah Mitchell1, Kader Yagiz1, Anthony Munday1, Fernando Lopez1, Daniel Mendoza1, Douglas Jolly1
|
1Tocagen, San Diego, CA, USA
|
Adoptive immunotherapy | Myeloid cells | Regulatory T cell (Treg) | Tumor microenvironment | Checkpoint blockade
|
P285
|
Antibody and T cell response profiling of pancreatic cancer patients before and after chemotherapy reveals increased recognition of antigens suitable for immunotherapy
|
Giorgia Mandili1, Moitza Principe1, Emanuela Mazza1, Sara Bulfamante1, Laura Follia1, Giulio Ferrero1, Andrea Evangelista2, Daniele Giordano1, Paola Cappello1, Francesco Novelli1
|
1University of Turin, Torino, Italy 2Hospital Città della Salute e della Scienza di Torino, Torino, Italy
|
Chemotherapy | Biomarkers | Proteomics | Tumor antigens | Antibody | T cell
|
P286
|
Efficacy of interleukin 2 and interleukin 15 for in situ vaccination in a mouse melanoma model.
|
Alexander Rakhmilevich1, Anna Hoefges1, Jacob Slowinski1, Kayla Rasmussen1, Mackenzie Heck1, Michael Meagher2, Alan Korman3, Paul Sondel1
|
1University of Wisconsin-Madison, Madison, WI, USA 2St. Jude Children’s Research Hospital/Children’s GMP, LLC, Memphis, TN, USA 3Bristol-Myers Squibb Company, Redwood City, CA, USA
|
Checkpoint blockade | Cytokine | Vaccine
|
P287
|
Immunological effects of checkpoint blockade plus galectin-3 inhibition with GR-MD-02 in a first-in-human phase I clinical trial
|
William Redmond1, Yoshinobu Koguchi1, Christopher Fountain1, Peter Traber2, Brendan Curti1
|
1Providence Portland Medical Center, Portland, OR, USA 2Galectin Therapeutics, Norcross, GA, USA
|
Myeloid cells | Checkpoint blockade | Clinical study | Immune monitoring | Clinical trial | Immune suppression | Monocyte/Macrophage | Solid tumors | Tumor infiltrating lymphocytes (TILs)
|
P288
|
KY1044, a novel anti-ICOS antibody, elicits long term in vivo anti-tumour efficacy as monotherapy or in combination with immune checkpoint inhibitors.
|
Richard C.A. Sainson1, Anil Thotakura1, Nahida Parveen1, Gwenoline Bohris1, Robert Rowlands1, Miha Kosmac1, Jamie Campbell1, Ian Kirby1, Volker Germaschewski1, Matthew McCourt1
|
1Kymab Ltd, Cambridge, United Kingdom
|
Immune contexture | Regulatory T cell (Treg) | Tumor microenvironment | Checkpoint blockade | Targeted therapy | Antibody | Tumor infiltrating lymphocytes (TILs)
|
P289
|
Dual cIAP1/XIAP Inhibitor ASTX660 Synergizes with Radiation Therapy and PD-1 Blockade to Enhance Anti-Tumor Immunity
|
Roy Xiao1,2, Clint Allen1,3, Linda Tran1, So-Jin Park1, Zhong Chen1, Carter Van Waes1, Nicole Schmitt1,3
|
1NIDCD, NIH, Bethesda, MD, USA
|
Inflammation | Tumor microenvironment | Checkpoint blockade | Targeted therapy | Cytokine | Radiotherapy | Tumor infiltrating lymphocytes (TILs) | T cell
|
P290
|
Agonist Redirected Checkpoint (ARC), TIM3-Fc-OX40L, for Cancer Immunotherapy
|
George Fromm1, Suresh de Silva1, Kellsey Johannes1, Arpita Patel1, Josiah Hornblower1, Taylor Schreiber1
|
1Shattuck Labs, Inc., Research Triangle Park, NC, USA
|
Costimulation | Checkpoint blockade | Immune suppression | T cell | Regulatory T cell (Treg)
|
P291
|
Agonist Redirected Checkpoint (ARC), SIRPα-Fc-CD40L, for Cancer Immunotherapy
|
Suresh de Silva1, George Fromm1, Arpita Patel1, Kellsey Johannes1, Josiah Hornblower1, Taylor Schreiber1
|
1Shattuck Labs, Inc., Research Triangle Park, NC, USA
|
Costimulation | Myeloid cells | Checkpoint blockade | Coinhibition | Monocyte/Macrophage | Tumor infiltrating lymphocytes (TILs)
|
P292
|
Pre-clinical activity of a novel immunotherapy combination of CAVATAK (Coxsackievirus A21), anti-PD1 blockade and an IDO inhibitor in melanoma
|
Gough Au1, Min Yuan1, Yvonne Wong1, Darren Shafren1
|
1Viralytics Limited, Sydney, Australia
|
Checkpoint blockade | Vaccine
|
P293
|
Talimogene Laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: a case series
|
Lillian Sun1, Pauline Funchain2, Jung-Min Song2, Michael McNamara2, Brian Gastman3
|
1Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA 2Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA 3Cleveland Clinic, Cleveland, OH, USA
|
Checkpoint blockade | Antigen presenting cells | Tumor antigens | Solid tumors | Tumor microenvironment | T cell
|
P294
|
Cost of adverse events associated with immunotherapy monotherapy versus targeted therapy in elderly metastatic melanoma patients
|
Jackson Tang1, Zhiyi Li1, Syed Mahmood2, Sameer Ghate2
|
1Asclepius Analytics, New York, NY, USA 2Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
|
Targeted therapy | Immune toxicity
|
P295
|
Economic burden of adverse events associated with immunotherapy and targeted therapy for metastatic melanoma in the US elderly population
|
Jackson Tang1, Zhiyi Li1, Syed Mahmood2, Sameer Ghate2
|
1Asclepius Analytics, New York, NY, USA 2Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
|
Immune toxicity | Targeted therapy
|
P296
|
Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to dendritic cells.
|
Claire Vanpouille-Box1, Julie Diamond1, Nils Rudqvist1, Karsten Pilones1, Yasmeen Sarfraz1, Silvia Formenti2, Sandra Demaria1
|
1Weill Cornell Medicine, New York, NY, USA 2Weill Cornell, New York, NY, USA
|
Radiotherapy | Vaccine | Dendritic cell | Biomarkers
|
P297
|
Predicting the efficacy of combination immunotherapy in animal models using tumor microenvironment immune cell profiling.
|
Ava Vila-Leahey1, Genevieve Weir1, Alecia MacKay1, Valarmathy Kaliaperumal1, Cynthia Tram1, Marianne Stanford1
|
1Immunovaccine, Halifax, NS, Canada
|
Checkpoint blockade | Immune monitoring | Tumor infiltrating lymphocytes (TILs) | T cell | Vaccine
|