#
|
Title
|
Authors
|
Affiliations
|
Keywords
|
P1
|
Characterization of the tumor microenvironment and immune profile in non-small cell lung cancer
|
Hanny Musa1, Johannes Zimmermann2, Felix Segerer2, Moritz Widmaier2, Mindaugas Andrulis3, Andreas Ackermann1
|
1Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany 2Definiens AG, 80636 Munich, Germany 3Klinikum Ludwigshafen, 67063 Ludwigshafen am Rhein, Germany
|
Biomarkers | Immune contexture | Gene expression | Tumor infiltrating lymphocytes (TILs) | Tumor microenvironment | Tumor stroma | Immune suppression | Immune monitoring | Inflammation | Checkpoint blockade
|
P2
|
ADXS-PSA immunotherapy increases the magnitude and quality of prostate cancer antigen-specific T cell responses in patients with metastatic castration-resistant prostate cancer
|
Sandra M. Hayes1 Robert G. Petit1, Lawrence Fong2, Mark Stein3, Ronald Tutrone4, Anthony Mega5, Naomi Haas6
|
1Advaxis Immunotherapies, Inc, Princeton, NJ, USA 2UCSF University of California, San Francisco, CA, USA 3The Cancer Institute of New Jersey CINJ Rutgers, Inc, New Brunswick, NJ, USA 4Chesapeake Urology Research Associates, Towson, MD, USA 5Lifespan Oncology Clinical Research, Providence, RI, USA 6University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
|
Tumor antigens | Biomarkers | Immune monitoring | T cell | Vaccine
|
P3
|
Persistence of 6-thioguanine-resistant T-cell clones in a melanoma patient with durable antitumor response following treatment with immune checkpoint blockade.
|
Cindy Zuleger1, Michael Newton1, Irene Ong1, Mark Albertini1,2
|
1Carbone Cancer Center at the University of Wisconsin School of Medicine and Public Health, Madison, WI, USA 2William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
|
Biomarkers | Checkpoint blockade | Immune monitoring | Solid tumors | T cell
|
P4
|
The prognostic and predictive roles of a CD8/PD-L1 signature in cancer
|
Sonja Althammer1, Keith Steele2, Moritz Widmaier1, Charles Brown2, Tze Heng Tan1, Lorenz Rognoni1, Hélène Kaplon3, David Friedrich1, Brandon W Higgs2, Günter Schmidt1, Koustubh Ranade2, Marie-Caroline Dieu-Nosjean3
|
1Definiens, Munich, Germany 2Medimmune, Gaithersburg, MD, USA 3INSERM, UMRS 1138, Paris, France
|
Checkpoint blockade | Biomarkers | Bioinformatics | Tumor microenvironment | Antibody | Clinical trial | Clinical study | Tumor infiltrating lymphocytes (TILs) | Solid tumors | Chemotherapy
|
P5
|
Analytical Comparison of Methods Used to Assess Mismatch Repair Deficiency
|
Steven Anderson1, Li Cai2, Lori Johnson3, Bryan McCune2
|
1Covance, Durham, NC, USA 2Integrated Oncology, Research Triangle Park, NC, USA 3Covance, Morrisville, NC, USA
|
Biomarkers | Checkpoint blockade | Solid tumors
|
P6
|
Characterization of AB928, a Dual Adenosine A2aR/A2bR Antagonist That Retains Potency under Conditions of High Albumin and High Receptor Activation
|
Devika Ashok1, Lisa Seitz1, Joanne Tan1, Adam Park1, Tim Park1, Ferdie Soriano1, Terry Rosen1, Ehesan Sharif1, Dillon Miles1, Manmohan Leleti1, Juan Jaen1, Jay Powers1, Matthew Walters1, Steve Young1
|
1Arcus Biosciences, Hayward, CA, USA
|
Myeloid cells | Biomarkers | T cell | Tumor microenvironment
|
P7
|
Withdrawn
|
|
|
|
P8
|
T cell response profiling in colorectal carcinoma patients reveals an enrichment in responses to specific tumor-associated antigens
|
Kyle Ferber1, Johanna Kaufmann1, Christine McCoy1, Judy Jacques1, Abdulmohammad Pezeshki2, Ning Wu1, Michael O'Keefe1, Crystal Cabral1, Yana Ostrovsky1, Jason Dobson1, Theresa Zhang1, Pamela Carroll1, Khashayarsha Khazaie2, Jessica Flechtner1, Wendy Broom1
|
1Genocea Biosciences, Cambridge, MA, USA 2Mayo Clinic, Rochester, MN, USA
|
Biomarkers | Immune monitoring | Tumor antigens | T cell | Dendritic cell
|
P9
|
Using iPair-TCR™ and iPair-TCR+™ to track tumor infiltrating lymphocytes from peripheral blood in a longitudinal breast cancer patient study
|
Miranda Byrne-Steele1, Wenjing Pan1, Xiaohong Hou1, Brittany Brown1, Mary Eisenhower1, Alexa Fort1, Jian Han1
|
1iRepertoire Inc., Huntsville, AL, USA
|
Immune monitoring | T cell | Solid tumors | Gene expression | Tumor infiltrating lymphocytes (TILs) | CAR T cells
|
P10
|
Epithelial-mesenchymal transition (EMT) signature was inversely associated with activated CD8 infiltration in non-small cell lung cancer (NSCLC)
|
Young Kwang Chae1, Sangmin Chang1, Taeyeong Ko1, Jonathan Anker1, Sarita Agte2, Wade Iams1, Marcelo Cruz1
|
1Northwestern University Feinberg School of Medicine, Chicago, IL, USA 2Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
|
Immune suppression | Immunoscore | T cell | Tumor microenvironment | Biomarkers | Tumor infiltrating lymphocytes (TILs)
|
P11
|
WNT/β-catenin pathway is inversely correlated with activated CD8 T cell infiltration in non-small cell lung cancer(NSCLC).
|
Young Kwang Chae1, Taeyeong Ko1, Sangmin Chang1, Jonathan Anker1, Sarita Agte2, Wade Iams1, Marcelo Cruz1
|
1Northwestern University Feinberg School of Medicine, Chicago, IL, USA 2Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
|
Tumor microenvironment | Biomarkers | Immune suppression | Immunoscore | T cell | Tumor infiltrating lymphocytes (TILs)
|
P12
|
Precision Immune Monitoring: New 30-parameter Flow Cytometry Uniquely and Comprehensively Defines Immune Checkpoint Expression and T Cell Phenotypes in Tumor Tissue
|
Pratip Chattopadhyay1, Amber Giles2, Leonard Nettey3
|
1NYU Medical School, New York, NY, USA 2NIH, Bethesda, MD, USA 3VRC, NIH, Bethesda, MD, USA
|
Tumor microenvironment | Immune monitoring | Checkpoint blockade | Biomarkers | T cell | Tumor infiltrating lymphocytes (TILs)
|
P13
|
Pre-existing T-cell immunity, mutational burden and stromal TGF-β signaling drives clinical responses to atezolizumab in locally advanced or metastatic urothelial carcinoma (mUC)
|
Sanjeev Mariathasan1, Shannon J. Turley1, Dorothee Nickles1, Yulei Wang1, Edward E. Kadel III1, Hartmut Koeppen1, Kobe Yuen1, Allessandra Castiglioni1, Jillian L. Astarita1, Rafael Cubas1, Suchit Jhunjhunwala1, Romain Banchereau1, Yagai Yang1, Yinghui Guan1, Cecile Chalouni1, James Ziai1, Yasin Şenbabaoğlu1, Steve Lianoglou1, Michiel van der Heijden2, Yohann Loriot3, Johathan Rosenberg4, Lawrence Fong5, Ira Mellman1, Daniel S. Chen1, Marjorie Green1, Christina Derleth1, Gregg D. Fine1, Priti S. Hegde1, Richard Bourgon1, Thomas Powles6
|
1Genentech, Inc., South San Francisco, CA, USA 2Netherlands Cancer Institute, Amsterdam, Netherlands 3Gustave Roussy, Villejuif, France 4Memorial Sloan Kettering Cancer Center, New York, NY, USA 5University of California San Francisco, San Francisco, CA, USA 6Barts Experimental Cancer Medicine Centre, London, United Kingdom
|
Biomarkers | Gene expression | Checkpoint blockade | Clinical trial | Immune monitoring | Tumor microenvironment | Tumor stroma | Tumor infiltrating lymphocytes (TILs)
|
P14
|
Comprehensive characterization of solid tumor immune profiles for precision immunotherapy using Immune Report Card
|
Mary Nesline1, Jeffrey Conroy1, Sarabjot Pabla1, Ji He1, Blake Burgher1, Vicent Giamo1, Jonathan Andreas1, Paul DePietro1, Antonios Papanicolau-Sengos1, Mark Gardner1, Sean Glenn1, Carl Morrison1
|
1OmniSeq, Inc., Buffalo, NY, USA
|
Checkpoint blockade | Tumor infiltrating lymphocytes (TILs) | Tumor microenvironment | Inflammation | Biomarkers | Immune monitoring | Gene expression | Solid tumors | T cell
|
P15
|
Overexpression of immunotherapeutic targets in the immune desert phenotype
|
Sarabjot Pabla1, Jeffrey Conroy1, Sean Glenn1, Ji He1, Blake Burgher1, Vincent Giamo1, Jonathan Andreas1, Maochun Qin1, Mark Gardner1, Antonios Papanicolau-Sengos1, Mary Nesline1, Carl Morrison1
|
1OmniSeq, Inc., Buffalo, NY, USA
|
Tumor microenvironment | Biomarkers | Checkpoint blockade | Immune monitoring | Gene expression | Solid tumors | T cell | Tumor infiltrating lymphocytes (TILs)
|
P16
|
The immune activated phenotype: secondary immunotherapeutic targets in the primary biomarker negative inflamed tumor
|
Sean Glenn1, Jeffrey Conroy1, Sarabjot Pabla1, Ji He1, Blake Burgher1, Vincent Giamo1, Jonathan Andreas1, Mark Gardner1, Antonios Papanicolau-Sengos1, Mary Nesline1, Carl Morrison1
|
1OmniSeq, Inc., Buffalo, NY, USA
|
Tumor microenvironment | Biomarkers | Checkpoint blockade | Immune monitoring | Gene expression | Solid tumors | T cell | Tumor infiltrating lymphocytes (TILs)
|
P17
|
The immune-excluded phenotype beyond colorectal cancer
|
Carl Morrison1, Sean Glenn1, Wiam Bshara2, Sarabjot Pabla1, Blake Burgher1, Vincent Giamo1, Jonathan Andreas1, Mary Nesline1, Mark Gardner1, Antonios Papanicolau-Sengos1, Igor Puzanov2, Marc Ernstoff2, Jeffrey Conroy1
|
1OmniSeq, Inc., Buffalo, NY, USA 2Roswell Park Cancer Institute, Buffalo, NY, USA
|
Tumor microenvironment | Biomarkers | Checkpoint blockade | Immune monitoring | Gene expression | Solid tumors | T cell | Tumor infiltrating lymphocytes (TILs)
|
P18
|
Withdrawn
|
|
|
|
P19
|
Genomic determinants of response to pembrolizumab in gastric cancer
|
Razvan Cristescu1, Diane Levitan1, Julie Kobie1, Andrew Albright1, Ping Qiu1, Robin Mogg1, Jared Lunceford1, Xiao Qiao Liu1, Xinwei Sher1, Michael Nebozhyn1, Gladys Arreaza1, Wendy Blumenschein1, Mark Ayers1, Terrill McClanahan1, Andrey Loboda1, David Kaufman1, Rita Dalal1, Minori Koshiji1
|
1Merck & Co., Inc., Kenilworth, NJ, USA
|
Biomarkers | Checkpoint blockade | Gene expression | Solid tumors | Tumor microenvironment
|
P20
|
Distinct tumour immune profiles in non-small cell lung cancer (NSCLC) revealed by automated quantitative digital image analyses of immune biomarker densities and spatial relationships
|
Marie Cumberbatch1, Elaine Foster2, James Clay2, Sunita Mistry2, Andrew Lawrence2, Christopher Womack2, David Fairley2
|
1Immune Insight Limited, Macclesfield, United Kingdom 2HistologiX Limited, Nottingham, United Kingdom
|
Immune contexture | Tumor microenvironment | Biomarkers | Immune monitoring | Tumor infiltrating lymphocytes (TILs)
|
P21
|
Correlation of inflammatory biomarkers and patient-reported outcomes in patients with urothelial carcinoma treated with durvalumab
|
Arnold Degboe1, Srikala Sridhar2, Jingsong Zhang3, Pralay Mukhopadhyay1, Ashok Gupta1, Lorin Roskos1, Xiang Guo1, Terence Friedlander4
|
1AstraZeneca, Gaithersburg, MD, USA 2Princess Margaret Cancer Centre, Toronto, ON, Canada 3Moffitt Cancer Center, 12902 USF Magnolia Drive, FL, USA 4UCSF Medical Center, San Francisco, CA, USA
|
Biomarkers | Inflammation | Solid tumors | Clinical study
|
P22
|
Up-regulation of a T and NK cell gene signature in peripheral blood is associated with mRNA-based immunotherapy in lung and prostate cancer.
|
Henoch S Hong1, Madeleine M Hipp1, Fatma Doener1, James M Billingsley2, Linus Backert3, Oliver Kohlbacher3, Andreas Schröder1, Ute Klinkhardt1, Sabine Brutlach1, Uwe Peukert1, Ulrike Gnad-Vogt1, Mariola Fotin-Mleczek1, Sven D Koch1
|
1CureVac AG, 72076 Tübingen, Germany 2Emory University, Atlanta, GA, USA 3Applied Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
|
Clinical trial | Immune monitoring | Tumor antigens | NK/NK T cell | T cell | Vaccine | Gene expression | Bioinformatics
|
P23
|
Deep molecular and immune-infiltrate stratification of cancer identifies mechanistic subtypes and predicts response to checkpoint inhibition.
|
Janusz Dutkowski1, Roy Ronen1
|
1Data4Cure, Inc., La Jolla, CA, USA
|
Bioinformatics | Checkpoint blockade | Immune suppression | Tumor infiltrating lymphocytes (TILs) | Systems biology | Biomarkers
|
P24
|
Systematic Literature Review of PD-L1 Assays, Their Scoring Algorithms and Validation Metrics
|
Margarita Udall1, Maria Rizzo2, Juliet Kenny2, Jim Doherty1, Eric Faulkner3
|
1Pfizer Inc., New York, NY, USA 2Evidera, London, United Kingdom 3Evidera, Morrisville, NC, USA
|
Biomarkers | Checkpoint blockade | Solid tumors
|
P25
|
A Systematic Literature Review (SLR) of the predictive value of programmed death ligand 1 (PD-L1) tests on clinical outcomes
|
Margarita Udall1, Jim Doherty1, Amber Martin2, Juliet Kenney3, Eric Faulkner4, Pratibha Chander1, Paul Robbins1, SueAnn Dahm1
|
1Pfizer Inc., New York, NY, USA 2Evidera, Waltham, MA, USA 3Evidera, London, USA 4Evidera, Morrisville, NC, USA
|
Biomarkers | Checkpoint blockade | Solid tumors
|
P26
|
Certain KIR/KIR ligand genotypes influence patient response to immunotherapy in neuroblastoma patient
|
Amy K. Erbe1, Wei Wang1, Lakeesha Carmichael1, Anna Hoefges1, KyungMann Kim1, Wendy B. London2, Jacquelyn A. Hank1, Mitchell B. Diccianni3, Arlene Naranjo4, Michael D. Hogarty5, Julie R. Park6, Alice L. Yu7, Paul M. Sondel1
|
1University of Wisconsin-Madison, Madison, WI, USA 2Boston Children’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA 3University of California San Diego, San Diego, CA, USA 4University of Florida, Gainesville, FL, USA 5Children's Hospital of Philadelphia, Philadelphia, PA, USA 6Seattle Children's Hospital, Seattle, WA, USA 7University of California San Diego, San Diego, CA, USA
|
Genetic polymorphism | Pediatric tumors | Biomarkers | Clinical study | Immune toxicity | Targeted therapy | Tumor antigens | Antibody | Clinical trial | NK/NK T cell
|
P27
|
Optimized workflow improves the characterization of tumor-infiltrating T cells
|
Cesar Evaristo1, Ramona Siemer1, David Agorku1, Janina Brauner1, Olaf Hardt1, Christian Dose1, Anne Richter1
|
1Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
|
Tumor microenvironment | Checkpoint blockade | Tumor infiltrating lymphocytes (TILs) | T cell | Solid tumors | Immune monitoring | Immune contexture | T cell lineages | Biomarkers
|
P28
|
Profiling of T cell responses to tumor-associated antigens in lung cancer patients treated with checkpoint inhibitors
|
Kyle Ferber1, Johanna K. Kaufmann1, Judy Jacques1, Christine McCoy1, Michael O'Keeffe1, Crystal Cabral1, Yana Ostrovsky1, Ning Wu1, Jason Dobston1, Theresa Zhang1, Pamela Carroll1, Jessica Flechtner1, Wendy Broom1
|
1Genocea Biosciences, Inc., Cambridge, MA, USA
|
T cell | Antigen presenting cells | Cytokine | Immune suppression | Immune monitoring | Checkpoint blockade | Biomarkers | Tumor antigens | Solid tumors | Vaccine
|
P29
|
Incorporating Premixed Staining Cocktail for Improving the Workflow for Whole Blood Immunophenotyping
|
Iliana Gonzalez1, Yoshinobu Koguchi1, William Miller1, Tanisha Meeuwsen1, Valerie K. Conrad1, Ana Howells-Ferreira1, Tomasz M. Poplonski1, William Redmond1
|
1Earle A. Chiles Research Institute, Portland, OR, USA
|
Immune monitoring | Antibody
|
P30
|
Mass spectrometry-based test predicts outcome on anti-PD-1 therapy for patients with advanced non-small cell lung cancer, including those with brain metastases
|
Sarah Goldberg1, Lucia Jilaveanu1, Harriet Kluger1, Veronica Chiang1, Amit Mahajan1, Bing Xia1, Matthew Ribeiro1, Heinrich Roder2, Joanna Roder2, Carlos Oliveira2, Julia Grigorieva2, Mirte Muller3, Anna-Larissa Niemeijer4, Robert Schouten3, Adrianus de Langen3,4, Egbert Smit3
|
1Yale School of Medicine, New Haven, CT, USA 2Biodesix, Steamboat Springs, CO, USA 3Netherlands Cancer Institute, Amsterdam, Netherlands 4VU University Medical Center, Amsterdam, Netherlands
|
Biomarkers | Checkpoint blockade | Proteomics | Solid tumors | Clinical trial
|
P31
|
Proteomic biomarker analysis of metastatic melanoma patients treated with anti-PD-1 checkpoint blockade
|
Paolo Antonio Ascierto1, Mariaelena Capone1, Antonio Maria Grimaldi1, Domenico Mallardo1, Ester Simeone1, Heinrich Roder2, Krista Meyer2, Senait Asmellash3, Carlos Oliveira2, Joanna Roder2
|
1Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Naples, Italy 2Biodesix, Steamboat Springs, CO, USA 3Biodesix, Boulder, CO, USA
|
Biomarkers | Checkpoint blockade | Proteomics | Solid tumors
|
P32
|
Differential association of myeloid cell and IFN-γ associated proteins with clinical response to durvalumab treatment in urothelial bladder cancer
|
Xiang Guo1, Wendy White1, Denise Jin2, Yanan Zheng2, Rajesh Narwal1, Yu Gu1, Ashok Gupta1, Pralay Mukhopadhyay3, Brandon Higgs1, Tony W. Ho3, Lorin Roskos1
|
1MedImmune, Gaithersburg, MD, USA 2MedImmune, Mountain View, CA, USA 3AstraZeneca, Gaithersburg, MD, USA
|
Biomarkers | Metabolism | Chemokine | Checkpoint blockade | Solid tumors
|
P33
|
The presence of effector immune cells in human CD200 positive tumor samples supports the CD200 immune checkpoint as a novel therapeutic target
|
Mark Hamilton1, Rui-Ru Ji2, Tony Arulanandam1, Sharon Barr1
|
1Alexion Pharmaceuticals, Inc., New Haven, CT, USA 2Alexion Pharmaceuticals, Inc., Lexington, MA, USA
|
Bioinformatics | Pediatric tumors | Biomarkers | Checkpoint blockade | Gene expression | Immune suppression | Tumor infiltrating lymphocytes (TILs) | Solid tumors | Proteomics | Tumor microenvironment
|
P34
|
Pre-existing anti-therapeutic antibodies against Fc-region determinants shared by rituximab and hu14.18K322A are associated with outcome in a phase I trial of hu14.18K322A
|
Jacquelyn Hank1, Jacob Goldberg1, Fariba Navid2, Amy Erbe1, Victor Santana3, Jacek Gan1, Fenna de Bie1, Amal Javaid1, Anna Hoefges1, Lakeesha Carmichael1, Michael Bishop3, Michael Meagher4, Stephen Gillies5, Janardan Pandey6, Paul Sondel1
|
1University of WI-Madison, Madison, WI, USA 2Children’s Hospital Los Angeles, Los Angeles, CA, USA 3St. Jude Children’s Research Hospital, Memphis, TN, USA 43St. Jude Children’s Research Hospital, Memphis, TN, USA 5Provenance Biopharmaceuticles, Carlisle, MA, USA 6Medical University of South Carolina, Charleston, SC, USA
|
Biomarkers | Clinical study | Immune monitoring | Targeted therapy | Antibody | Clinical trial | Vaccine
|
P35
|
Withdrawn
|
|
|
|
P36
|
Computational Tissue Analysis–Based Quantification of Tumor-Infiltrating Leukocytes Using Morphometrics in Immunohistochemistry Stained NSCLC Samples
|
Elliott Ergon1, Allison Harney1, Will Paces1, Kristin Wilson1, Karen Ryall1, Daniel Rudmann1, Brooke Hirsch1, Joseph Krueger1
|
1Flagship Biosciences, Westminster, CO, USA
|
Immune contexture | Inflammation | Tumor microenvironment | Biomarkers | Tumor infiltrating lymphocytes (TILs)
|
P37
|
Combining in situvaccination with checkpoint blockade enhances an endogenous anti-tumor B-cell response resulting in tumor-specific humoral memory
|
Clinton Heinze1, Claire Baniel1, Peter Carlson1, Jacquelyn Hank1, Raghava Sriramaneni1, Emily Guy1, Jasdeep Kler1, Sara Busche1, Stephen Gillies2, Hans Loibner3, Alan Korman4, Alexander Rakhmilevich1, Paul Sondel1, Zachary Morris1
|
1Wisconsin Institutes of Medical Research, Madison, WI, USA 2Provenance Biopharmaceuticals, Carlisle, MA, USA 3APEIRON Biologics, Vienna, Austria 4Bristol-Myers Squibb, Sunnyvale, CA, USA
|
B cell | Antibody | Biomarkers | Radiotherapy | Vaccine | Checkpoint blockade
|
P38
|
A Strategy to Assess Contributions of Individual Agents in Combination Immunotherapy Trials
|
Traci Hilton1, Christopher Paustian1, Yoshinobu Koguchi2, Adi Mehta3, Fridtjof Lund-Johansen4, Brian Boulmay, Rui Li, Kyle Happel, Tarsem Moudgil, Sachin Puri, Christopher Dubay, Brenda Fisher, Rogan Rattray, Mary Campbell
|
1Ubivac, Portland, OR, USA 2Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA 3Oslo, Norway 4Oslo University Hospital Rikshospitalet, Oslo, Norway
|
B cell | Antibody | Biomarkers | Clinical study | Immune monitoring | Proteomics | Tumor antigens | Vaccine | T cell | Clinical trial
|
P39
|
Use of ex vivo Histoculture to identify potential predictive biomarkers for the ICOS agonist antibody, JTX-2011
|
Heather Hirsch1, Jason Reeves1, Tong Zi1, Amit Deshpande1, Guang Yang1, Alexander Needham1, Jenny Shu1, Christopher Harvey1, Sriram Sathyanaryanan1, Jennifer Michaelson1, Emma Lees1, Elizabeth Trehu1, Debbie Law1
|
1Jounce Therapeutics, Inc., Cambridge, MA, USA
|
Biomarkers | Checkpoint blockade | Bioinformatics | Tumor infiltrating lymphocytes (TILs) | Solid tumors | Regulatory T cell (Treg)
|
P40
|
Deep proteomic and transcriptomic analysis of sorted T cells with a simple, integrated workflow
|
Kit Fuhrman1, Douglas Hinerfeld1, Katherine Drake2, Gary Geiss1
|
1Nanostring Technologies, Inc., Seattle, WA, USA 2Cytobank, Inc., Santa Clara, CA, USA
|
T cell | Gene expression | Targeted therapy | Systems biology | Proteomics | Immune monitoring | Biomarkers | Regulatory T cell (Treg)
|
P41
|
IgG antibodies correspond with T cell responses to tumor neoantigens
|
Tyler Hulett1, Shawn Jensen1, Larry David2, Ashok Reddy2, Phillip Wilmarth2, Carmen Ballesteros-Merino1, Christopher Dubay1, Michael Afentoulis1, Bernard Fox1
|
1Earle A. Chiles Research Institute, Portland, OR, USA 2Oregon Health & Science University, Portland, OR, USA
|
T cell | Antibody | Vaccine | Tumor antigens | Proteomics | Neoantigens | Autoimmunity | Biomarkers | Bioinformatics
|
P42
|
The checkpoint inhibitor TTI-621 (SIRPαFc) stimulates innate and adaptive immune responses in patients with hematologic and solid tumor malignancies
|
Lisa Johnson1, Stephen Ansell2, Robert Chen3, Ian Flinn4, Michael Maris5, Owen O'Connor6, Alexander Lesokhin7, John Thompson8, Oleg Akilov9, Christiane Querfeld3, Matthew Taylor10, Meghan Irwin1, Tina Catalano1, Penka Petrova1, Eric Sievers1, Robert Uger1
|
1Trillium Therapeutics Inc., Mississauga, ON, Canada 2Mayo Clinic, Rochester, MN, USA 3City of Hope, Duarte, CA, USA 4Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA 5Sarah Cannon Research Institute/Colorado Blood Cancer Institute, Denver, CO, USA 6Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA 7Memorial Sloan Kettering Cancer Center, New York, NY, USA 8University of Washington/Seattle Cancer Care Alliance, Seattle, WA, USA 9University of Pittsburgh, Pittsburgh, PA, USA 10Oregon Health and Science University, Portland, OR, Canada
|
Biomarkers | Checkpoint blockade | Immune monitoring | Clinical trial | Cytokine | Monocyte/Macrophage | T cell | Chemokine | Solid tumors
|
P43
|
Assessment of Pharmacodynamic Effects of Immuno-Oncology Agents in Cynomolgus Monkeys using High-Content Gene Expression Profiling
|
Veena Kandaswamy1, Amelie Forest1, Thompson Doman2, Manisha Brahmachary1, Krishna Chodavarapu1, Jason Manro2, John Rhoden2, Bing Han2, Nate Elliott3, Sarah Warren3, Tim Riordan3, Christina Bailey3, Ruslan Novosiadly1, Michael Kalos1, Gerald Hall1
|
1Eli Lilly & Company, New York, NY, USA 2Eli Lilly & Company, Indianapolis, IN, USA 3NanoString Technologies, Seattle, WA, USA
|
Biomarkers | Antibody | Monocyte/Macrophage | T cell | Gene expression
|
P44
|
Patient selection strategies and pharmacodynamic assays for CCR4 antagonists
|
Abood Okal1, William Ho1, Brian Wong1, Paul Kassner1, Gene Cutler1
|
1FLX Bio Inc., South San Francisco, CA, USA
|
Bioinformatics | Regulatory T cell (Treg) | Immune suppression | Gene expression | Chemokine | T cell | Tumor infiltrating lymphocytes (TILs) | Tumor microenvironment | Biomarkers
|
P45
|
The inhibitory checkpoint molecule NKG2A is upregulated on tumor infiltrating NK cells and CD8 T cells in human head and neck tumors
|
Michael Korrer1, Young Kim1
|
1Vanderbilt University Medical Center, Nashville, TN, USA
|
Tumor microenvironment | T cell | NK/NK T cell | Immune suppression | Checkpoint blockade
|
P46
|
The impact of anti-PD-1 treatment on the immune cells and their correlation with the circulating tumour cells in patients with non-small cell lung cancer
|
Eleni-Kyriaki Vetsika1, Despoina Aggouraki1, Galaktia Kallergi1, Zaharoula Lyristi1, Aristeidis Koukos1, Despoina Kourougkiaouri1, Konstantinos Rounis2, Vassilis Georgoulias1, Athanasios Kotsakis2
|
1University of Crete, Faculty of Medicine, Heraklion, Greece 2University General Hospital of Heraklion, Crete, Greece, Heraklion, Greece
|
Biomarkers | Checkpoint blockade | Immune monitoring | Solid tumors
|
P47
|
Gene expression analysis of IL-13Rα2 in human adrenocortical carcinoma correlates with poor survival
|
Abhinav Kumar1, Ian Bellayr1, Raj Puri1
|
1Food and Drug Administration, Silver Spring, MD, USA
|
Bioinformatics | Biomarkers | Gene expression
|
P48
|
Different impact of immune cell infiltration and HLA class I expression in lymph node vs. cutaneous/subcutaneous metastases as predictive markers in melanoma patients treated with ipilimumab
|
Tímea Balatoni1, Anita Mohos2, Eszter Papp1, Tímea Sebestyén3, Gabriella Liszkay1, Judit Oláh4, Anita Varga4, Zsuzsanna Lengyel5, Gabriella Emri6, Soldano Ferrone7, Andrea Ladányi1
|
1National Institute of Oncology, Budapest, Hungary 2Semmelweis University, Budapest, Hungary 3St. John's Hospital, Budapest, Hungary 4Albert Szent-Györgyi Medical Center, University of Szeged, Szeged, Hungary 5University of Pécs, Pécs, Hungary 6Faculty of Medicine, University of Debrecen, Debrecen, Hungary 7Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
|
Immune contexture | Tumor microenvironment | Biomarkers | Checkpoint blockade | Tumor infiltrating lymphocytes (TILs)
|
P49
|
Characterization of immune checkpoint marker expression and infiltrating lymphoid and myeloid immune cells in the tumor microenvironment by RNA in situ hybridization
|
Annelies Laeremans1, Na Li1, Jeffrey Kim1, Xiao-Jun Ma1, Emily Park1
|
1Advanced Cell Diagnostics, Newark, CA, USA
|
Myeloid cells | Regulatory T cell (Treg) | T cell lineages | Tumor microenvironment | Checkpoint blockade | Biomarkers | Immune monitoring | Gene expression | Cytokine | Tumor infiltrating lymphocytes (TILs)
|
P50
|
Application of the immunoscore as prognostic biomarkers in patients with epithelial ovarian cancer
|
Shin-Wha Lee1, Hee Jung Jung1, Young-Jae Lee1, Ha-Young Lee2, Yong-Man Kim1, Young-Tak Kim1
|
1Ulsan University, ASAN Medical Center, Seoul, Republic of Korea 2ASAN Institute for Life Science, Seoul, Republic of Korea
|
Immune monitoring | Immunoscore | Immune contexture | Biomarkers
|
P51
|
FGFR2b expression and baseline immune signature to guide FPA144 development in urothelial cancer
|
Yeonju Lee1, Nerissa Mendoza1, Janine Powers1, Lee Clark1, James Hnatyszyn1, Carmen Ladner1, Helen Collins1, Kevin P. Baker1, Majid Ghoddusi1
|
1Five Prime Therapeutics, Inc., South San Francisco, CA, USA
|
Tumor microenvironment | Biomarkers | Immune monitoring | Solid tumors | Tumor infiltrating lymphocytes (TILs)
|
P52
|
Partially exhausted T lymphocyte directed neoadjuvant immunotherapy in unresectable Stage III melanoma
|
Lauren Levine1, Clinton Wu1, Kelly Mahuron1, Katy Tsai1, Alain Algazi1, Michael Rosenblum1, Michael Alvarado1, Adil Daud1
|
1Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
|
Biomarkers | Checkpoint blockade | Clinical study | T cell | Solid tumors | Tumor infiltrating lymphocytes (TILs)
|
P53
|
The crosstalk between PD-1, CD137 and OX40 in head and neck cancer
|
Robert Ferris1
|
1UPCI, Pittsburgh, PA, USA
|
Antibody | Biomarkers | Costimulation | Coinhibition | Immune suppression | T cell | Tumor infiltrating lymphocytes (TILs) | Tumor microenvironment
|
P54
|
Multiplex IHC Immuno-Oncology Panel for standardized profiling of the immune status based on spatial and functional characterization of the tumor microenvironment
|
Svenja Lippok1, Florian Leiss1, Katrin Schneider1, Tobias Wiestler1, René Korn1, Dasa Medrikova1, Moritz Widmaier1, Martin Hager1, Ivan Kanchev1, Anthony Masci2, Gela Sia2, Chris Kerfoot2, Lisa Dauffenbach2, Ralf Huss1
|
1Definiens AG, 80636 Munich, Germany 2Mosaic Laboratories, Lake Forest, CA, USA
|
Bioinformatics | Tumor microenvironment | Biomarkers | Immunoscore | Immune tolerance | Immune contexture | Inflammation | Checkpoint blockade | Systems biology | Tumor stroma
|
P55
|
Non-fucosylated anti-CTLA-4 antibody enhances vaccine-induced T-cell responses in a non-human primate pharmacodynamic vaccine model
|
John Loffredo1, Raja Vuyyuru1, Vanessa Spires1, Sophie Beyer1, Maxine Fox1, Jon Ehrmann1, Katrina Taylor1, John Engelhardt1, Alan Korman1, Robert Graziano1
|
1Bristol-Myers Squibb, Princeton, NJ, USA
|
Biomarkers | Checkpoint blockade | Vaccine | T cell | Immune adjuvant | Immune monitoring
|
P56
|
Widespread human T cell receptor variable gene polymorphism revealed by long amplicon TCRβ repertoire sequencing: Implications for the prediction and interpretation of immunotherapy outcome
|
Tim Looney1, Alex Glavin1, Sarabjot Pabla2, Sean Glenn2, Lauren Miller3, Denise Topacio-Hall3, Elizabeth Linch3, Alice Zheng1, Jeffrey Conroy2, Blake Burgher2, Carl Morrison2, Geoffrey Lowman3, Mark Andersen3, Fiona Hyland1
|
1Thermo Fisher Scientific, South San Francisco, CA, USA 2OmniSeq, Buffalo, NY, USA 3Thermo Fisher Scientific, Carlsbad, CA, USA
|
Tumor microenvironment | Genetic polymorphism | Adoptive immunotherapy | Autoimmunity | Checkpoint blockade | Immune monitoring | Neoantigens | T cell | Tumor infiltrating lymphocytes (TILs)
|
P57
|
Insights into the tumor microenvironment and therapeutic T cell manufacture revealed by long amplicon immune repertoire sequencing
|
Geoffrey Lowman1, Tim Looney2, Elizabeth Linch1, Lauren Miller1, Denise Topacio-Hall1, Alex Pankov2, Alice Zheng2, Reidun Hartberg3, Hilde Almåsbak3, Tor Espen Stav-Noraas3, Anette Kullmann3, Fiona Hyland2, Mark Andersen1
|
1Thermo Fisher Scientific, Carlsbad, CA, USA 2Thermo Fisher Scientific, South San Francisco, CA, USA 3Thermo Fisher Scientific, Oslo, Norway
|
Adoptive immunotherapy | T cell lineages | Tumor microenvironment | Tumor antigens | Immune monitoring | Biomarkers | Autoimmunity | CAR T cells | Gene expression | T cell
|
P58
|
Public NY-ESO-1 specific TCRs as novel biomarkers for immune monitoring of NY-ESO-1 positive cancer patients
|
Hailing Lu1, Seth Pollack2, Neeta Somaiah3, Sant Chawla4, Patrick Hwu3, Marissa Vignali5, Julie Rytlewski5, Sacha Gnjatic6, Jan ter Meulen1
|
1Immune Design, Seattle, WA, USA 2Fred Hutchinson Cancer Research Center, Seattle, WA, USA 3MD Anderson Cancer Center, Houston, TX, USA 4Santa Monica Oncology Center, Santa Monica, CA, USA 5Adaptive Biotechnologies, Seattle, WA, USA 6Icahn School of Medicine at Mount Sinai, New York, NY, USA
|
Immune monitoring | Biomarkers | Vaccine | Tumor antigens | Clinical study | Clinical trial
|
P59
|
Multi color flow cytometry comparative analysis with DA-Cell(TM) centrifugation-less washing
|
Xavier Le Guezennec, Ph.D.1
|
1Curiox Biosystems, San Carlos, CA, USA
|
Biomarkers | Antibody | Systems biology
|
P60
|
Comparative Study of Flow Cytometry Analysis between Conventional Centrifuge Method and Centrifuge-less DA-Cell™ Method from the Perspective of Cell Retention
|
Xavier Le Guezennec1
|
1Curiox Biosystems, San Carlos, CA, USA
|
Inflammation | Autoimmunity | Antibody | Immune suppression | Immune monitoring | Biomarkers
|
P61
|
Cellular and genomic disease signature of peripheral blood mononuclear cells in patients with malignant pleural mesothelioma
|
Zachary R. Mallon1, Christophe Poulet1, Amanda Enstrom1, Somayeh Honarmand1, Aimee L. Murphy1, Raffit Hassan2, Dirk G. Brockstedt1, Chan C. Whiting1, Nitya Nair1
|
1Aduro Biotech, Inc., Berkeley, CA, USA 2National Cancer Institute, Bethesda, MD, USA
|
Biomarkers | Immune monitoring | Clinical trial | Gene expression
|
P62
|
Circulating T cell Subpopulations Correlate with Immune Inflammatory Signatures at the Tumor Site in Melanoma and Non-Squamous Non-small Cell Lung Cancer
|
Nataly Manjarrez-Orduño1, Selena Kansal1, Laurence Menard1, Sergey Lezhnin2, Can Jiang1, Paul Kayne1, Robin Edwards1, Suzanne Suchard1, Paul Fischer1, Bijal Kakrecha1, Chiang Yu1, Julie Carman1, Hongyue Dai2, Steven Bernstein1, Steven Nadler1
|
1Bristol-Myers Squibb, Princeton, NJ, USA 2M2GEN, Tampa, FL, USA
|
Immune contexture | T cell lineages | Biomarkers | Checkpoint blockade | Immune monitoring | Targeted therapy | T cell | Tumor microenvironment | Clinical study | Gene expression
|
P63
|
Measurement of the immune-suppressor nitric oxide within immune cell subsets in patients receiving ipilimumab with a peptide vaccine
|
Isaac P. Foote1, Zhihua Chen1, Y. Ann Chen1, Adam W. Mailloux1, Alisha Agrawal1, Braydon J. Schaible1, Amod Sarnaik1, Jeffrey S. Weber2, Anders E. Berglund1, James J. Mulé1, Joseph Markowitz1
|
1Moffitt Cancer Center, Tampa, FL, USA 2NYU, New York, NY, USA
|
Bioinformatics | Checkpoint blockade | Biomarkers | Immune monitoring
|
P64
|
Analytical Validation of Digital Spatial Profiling - a novel approach for multiplexed characterization of protein distribution and abundance in FFPE tissue sections
|
Kristi Barker1, Heather Metz1, Chris Merritt1, Lucas Dennis1, Philippa Webster1, Joseph Beechem1
|
1NanoString Technologies, Inc., Seattle, WA, USA
|
Tumor microenvironment | Tumor stroma | Tumor antigens | Tumor infiltrating lymphocytes (TILs) | T cell | Antibody | Solid tumors | Biomarkers
|
P65
|
Spatially-resolved, multiplexed digital characterization of protein abundance in FFPE tissue sections: application in preclinical mouse models
|
Yan Liang1, Alison VanSchoiack1, JingJing Gong1, Chris Merritt1, Dwayne Dunaway1, Jaemyeong Jung1, Isaac Sprague1, Sarah Warren1, Joseph Beechem1
|
1NanoString Technologies Inc., Seattle, WA, USA
|
Regulatory T cell (Treg) | T cell lineages | Tumor microenvironment | Biomarkers | Tumor antigens | Tumor stroma | Antibody | Solid tumors | T cell | Tumor infiltrating lymphocytes (TILs)
|
P66
|
Digital spatial profiling platform allows both spatially-resolved, multiplexed measurement of solid tumor and immune-associated protein distribution and abundance using a single FFPE tissue section
|
Youngmi Kim1, Chris Merritt1, Giang Ong1, Kristi Barker1, Jaemyeong Jung1, Isaac Sprague1, Yan Liang1, Sarah Warren1, Philippa Webster1, Dwayne Dunaway1, Joseph Beechem1
|
1NanoString Technologies Inc., Seattle, WA, USA
|
Regulatory T cell (Treg) | T cell lineages | Tumor microenvironment | Antibody | Solid tumors | T cell | Tumor infiltrating lymphocytes (TILs) | Tumor stroma | Tumor antigens | Biomarkers
|
P67
|
Standardization of tumor infiltrating lymphocytes isolation for flow cytometric analysis
|
William Miller1, Yoshinobu Koguchi1, William Redmond1
|
1Earle A. Chiles Research Institute, Portland, OR, USA
|
Tumor infiltrating lymphocytes (TILs) | Immune monitoring
|
P68
|
Immunogenomic evolution and atypical response to atezolizumab in a patient with metastatic triple-negative breast cancer (mTNBC)
|
Luciana Molinero1, Yijin Li1, Ching-Wei Chang1, Sophia Maund1, Maureen Berg2, Jeanne Harrison2, Marcella Fassò1, Carol O’Hear1, Priti S. Hegde1, Leisha A. Emens3
|
1Genentech, Inc., South San Francisco, CA, USA 2Johns Hopkins School of Medicine, Baltimore, MD, USA 3Johns Hopkins University School of Medicine, Baltimore, MD, USA
|
Biomarkers | Checkpoint blockade | Tumor infiltrating lymphocytes (TILs) | Tumor stroma | Tumor microenvironment | Immune monitoring | Clinical study | Gene expression
|
P69
|
A pan-cancer diagnostic, prognostic and targetable biomarker pipeline defining the failed immune-response
|
Anne Monette1,2, Antigoni Morou1,2, Louise Rousseau2, Jean-Baptiste Lattouf1, Daniel Kaufmann1, Igor Jurisica3, Rejean Lapointe1,2
|
1University of Montreal, Montreal, QC, Canada 2CRCHUM, Montreal, QC, Canada 3University of Toronto / 7Princess Margaret Cancer Centre and Techna, Toronto, ON, Canada
|
T cell | B cell | Bioinformatics | Biomarkers | Systems biology | Gene expression | Immune tolerance | Tumor microenvironment | Tumor infiltrating lymphocytes (TILs) | Immune monitoring
|
P70
|
Halioseek™, a dual CD8 and PD-L1 IVD assay to improve NSCLC patients stratification
|
Florence Monville1, Emmanuel Prestat1, Laurent Vanhille1, Julien Adam2, Sergiu Coslet3, Caroline Laugé1, Caroline Davin1, Merle Sophie Losch1, Luciana Batista1, Jacques Fieschi1
|
1HalioDx, Marseille, France 2Gustave Roussy Cancer Campus, Villejuif, France 3MImAbs, Marseille, France
|
Immune contexture | Tumor microenvironment | Biomarkers | Checkpoint blockade | Tumor infiltrating lymphocytes (TILs) | Solid tumors | T cell | Antibody
|
P71
|
Peptide-induced whole blood gene expression analysis for peptide-specific T-cell response
|
Taku Murakami1, Keiji Dohi2, Kenji Kuwabara2, Mieko Ogura1, Masato Mitsuhashi1
|
1Hitachi Chemical Co. America, Ltd., Irvine, CA, USA 2Shionogi & Co., Ltd., Osaka, Japan
|
Biomarkers | T cell | Vaccine | Gene expression
|
P72
|
Analysis of biomarkers from a cohort of advanced melanoma patients previously exposed to immune checkpoint inhibition treated with entinostat (ENT) and pembrolizumab (PEMBRO)
|
Melissa L. Johnson1, Dmitry Gabrilovich2, Fang Wang2, Rene Gonzalez3, Mateusz Opyrchal4, David Tamang5, Emmett Schmidt6, Michael L. Meyers7, Peter Ordentlich5, Sanjiv S. Agarwala8
|
1Sarah Cannon Research Institute, Nashville, TN, USA 2The Wistar Institute, Philadelphia, PA, USA 3University of Colorado Comprehensive Cancer Center, Aurora, CO, USA 4Roswell Park Cancer Institute, Buffalo, NY, USA 5Syndax Pharmaceuticals, Inc., Waltham, MA, USA 6Merck & Co., Inc., Kenilworth, NJ, USA 7Syndax Pharmaceuticals, Inc., New York, NY, USA 8St. Luke’s Cancer Center and University Health Network, Easton, PA, USA
|
Immune monitoring | Immune suppression | Checkpoint blockade | Clinical study | Clinical trial | Inflammation | Myeloid cells | Tumor microenvironment | Biomarkers | MDSC
|
P73
|
First-in-human neoadjuvant study of the immunogenomic impact of the oral IDO inhibitor epacadostat (INCB024360) on the tumor microenvironment of advanced ovarian cancer.
|
Junko Matsuzaki1, Amit Lugade1, Wiam Bshara1, Katherine Collins1, Sarah Warren2, Patrick Danaher2, Lucas Dennis2, Antonios Papanicolau-Sengos1, Leonard D’Amico3, Nirasha Ramchurren3, Angela Omilian1, Kevin Eng1, Sebastiano Battaglia1, Robert Newton4, Peggy Scherle4, Lance Leopold4, Steven Fling3, Richard Shine3, Martin Cheever3, Melissa Geller5, Kunle Odunsi1
|
1Roswell Park Cancer Institute, Buffalo, NY, USA 2Nanostring, Seattle, WA, USA 3CITN, Seattle, WA, USA 4Incyte Corporation, Wilmington, DE, USA 5University of Minnesota, Minneapolis, MN, USA
|
Biomarkers | Immune monitoring | Tumor microenvironment | Immune suppression | Gene expression
|
P74
|
Increasing the levels of anti-beta glucan antibodies by administration of intravenous immunoglobulin (IVIG) induces immunopharmacodynamic (IPD) responses of a novel immunotherapeutic Imprime PGG
|
Nadine Ottoson1, Keith Gorden1, Blaine Rathmann1, Xiaohong Qiu1, Ben Harrison1, Michele Gargano1, Nandita Bose1, Gautam Jha2, Arkadiusz Dudek3
|
1Biothera Pharmaceuticals, Eagan, MN, USA 2The University of Minnesota, Minneapolis, MN, USA 3HealthPartners Institute, St. Paul, MN, USA
|
Biomarkers | Clinical study | Monocyte/Macrophage | Immune monitoring
|
P75
|
iSEND Is an Algorithmic Model Specific for Advanced Non-Small Cell Lung Cancer Patients Treated with PD-1 / PD-L1 Inhibitors
|
Wungki Park1, Vaia Florou1, Sandra Algaze1, Diana Saravia1, Deukwoo Kwon1,2, Gilberto Lopes1
|
1University of Miami Miller School of Medicine, Miami, FL, USA 2Sylvester Comprehensive Cancer Center, Miami, FL, USA
|
Biomarkers | Checkpoint blockade | Myeloid cells | Clinical study
|
P76
|
Usefulness of automated multidimensional flow cytometry analyses for monitoring the status of T and APC compartments in breast cancer patients under neoadjuvant chemotherapy
|
David Bernal-Estévez1, Carlos Parra-López2
|
1Fundación Salud de los Andes, Bogota, Colombia 2Universidad Nacional de Colombia, Bogota, Colombia
|
Antigen presenting cells | Bioinformatics | Chemotherapy | Dendritic cell | Immune contexture | Biomarkers | Immune monitoring | T cell
|
P77
|
The Novel IL-2 Cytokine Immune Agonist NKTR-214 Harnesses the Adaptive and Innate Immune System for the Treatment of Solid Cancers
|
Salah Eddine Bentebibel1, Chantale Bernatchez1, Cara Haymaker1, Michael Hurwitz2, Patrick Hwu1, Mario Sznol2, Nizar Tannir1, Sandra Aung3, Michael Imperiale3, Mary Tagliaferri3, Christie Fanton3, Ernesto Iacucci3, Jonathan Zalevsky3, Ute Hoch3, Adi Diab1
|
1The University of Texas MD Anderson Cancer Center, Houston, TX, USA 2Yale School of Medicine, New Haven, CT, USA 3Nektar Therapeutics, San Francisco, CA, USA
|
Solid tumors | Tumor infiltrating lymphocytes (TILs) | Cytokine | Regulatory T cell (Treg) | Biomarkers | Tumor microenvironment | Gene expression | Clinical trial | Immune monitoring | T cell
|
P78
|
Immune, molecular and T cell repertoire landscape of 235 resected non-small cell lung cancers, paired normal lung and peripheral blood mononuclear cells
|
Alexandre Reuben1, Rachel Gittelman2, Jiexin Zhang1, Runzhe Chen1, Kelly Quek1, Luis Vence1, Irina Fernandez-Cubelo1, Carmen Behrens1, Jianjun Gao1, Erik Yusko3, Ryan Emerson3, Sharon Benzeno3, Marissa Vignali3, Christopher Tipton4, Ali Jalali1, Won-Chul Lee1, Jun Li1, Xifeng Wu1, Yuanqing Ye1, Agda Eterovic1, Latasha Little1, Curtis Gumbs1, Vancheswaran Goplakarishnan1, Chantale Bernatchez1, Cara Haymaker1, Marie-Andrée Forget1, Lorenzo Federico1, Tina Cascone1, Harlan Robins5, Emily Roarty1, Jaime Rodriguez1, Edwin Parra1, Jennifer Wargo1, James Allison1, Padmanee Sharma1, Jianhua Zhang1, Jack Lee1, Boris Sepesi1, Stephen Swisher1, Don Gibbons1, John Heymach1, Andy Futreal1, Ignacio Wistuba6, Jianjun Zhang6
|
1MD Anderson Cancer Center, Houston, TX, USA 2Adaptive Biotechnologies, Seattle, WA, USA 3Adaptive Technologies, Seattle, WA, USA 4Emory University School of Medicine, Atlanta, GA, USA 5MD Anderson Cancer Center, Seattle, WA, USA 6MD Anderson, Houston, TX, USA
|
Adoptive immunotherapy | Immune contexture | Tumor infiltrating lymphocytes (TILs) | T cell | Immune monitoring
|
P79
|
T-cell inflamed gene expression profile (GEP) analysis of pembrolizumab- and ipilimumab-treated patients with advanced melanoma in the multicenter, randomized, open-label phase 3 KEYNOTE-006 study
|
Antoni Ribas1, Caroline Robert2, Jacob Schachter3, Georgina Long4, Ana Arance5, Jean-Jacques Grob6, Matteo Carlino7, James Larkin8, Andrea Webber9, Robin Mogg9, Mark Ayers9, Jared Lunceford9, Fang Liu9, Michael Nebozhyn9, Andrew Albright9, Wendy Blumenschein9, Clemens Krepler9, David Kaufman9, Nageatte Ibrahim9, Adil Daud10
|
1University of California, Los Angeles, Los Angeles, CA, USA 2Gustave Roussy and Paris-Sud University, Villejuif, France 3Ella Lemelbaum Institute for Melanoma, Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel 4Melanoma Institute Australia, The University of Sydney, Mater Hospital and Royal North Shore Hospital, Sydney, Australia 5Hospital Clinic de Barcelona, Barcelona, Spain 6Aix Marseille University, Hôpital de la Timone, Marseille, France 7Westmead and Blacktown Hospitals, Melanoma Institute Australia, and The University of Sydney, Blacktown, Australia 8Royal Marsden Hospital, London, United Kingdom 9Merck & Co., Inc., Kenilworth, NJ, USA 10University of California, San Francisco, San Francisco, CA, USA
|
Antibody | Biomarkers | Checkpoint blockade | Clinical trial | Clinical study | Gene expression | Solid tumors | Targeted therapy | T cell | Tumor microenvironment
|
P80
|
Testing Systems Immune Monitoring by Mass Cytometry for Clinical Correlative Research
|
Caroline Roe1, Allison Greenplate1, Jonathan Irish1
|
1Vanderbilt University, Nashville, TN, USA
|
Systems biology | T cell | Immune monitoring | Biomarkers | Checkpoint blockade | Targeted therapy
|
P81
|
The immunomodulatory effects of cancer therapy on IFN-gamma responses in the periphery
|
Laura Rosa Brunet1, James Crooks2, Andrew MacDonald2, Samuel LaBrie3, Dominic Eisinger3
|
1Immodulon Therapeutics Ltd, Uxbridge, United Kingdom 2Manchester University, Manchester, United Kingdom 3Myriad RBM, Austin, TX, USA
|
Biomarkers | Immune monitoring | Immune adjuvant | Dendritic cell | T cell
|
P82
|
Potential biomarkers in mRCC patients treated with nivolumab
|
Maria Sayapina1, Dmitry Nosov2, Nikita Savelov3, Nina Lyubimova1, Yuriy Timofeev1
|
1N.N. Blokhin Russian Oncology Research Center, Moscow, Russian Federation 2The Central Clinical Hospital for Presidential Affairs, Moscow, Russian Federation 3The Moscow City Oncology Hospital No. 62, Istra, Russian Federation
|
Biomarkers | Checkpoint blockade | Solid tumors
|
P83
|
Characterizing Cancers by Prevalence on the PD-L1/CD8 Axis
|
Guenter Schmidt1, Keith Steele2, Armin Meier1, Thomas Herz1, Tze Heng Tan1, Brandon Higgs2, Sonja Althammer1, Ralf Huss1
|
1Definiens AG, Munich, Germany 2MedImmune LLC, Gaithersburg, MD, USA
|
Immune contexture | Bioinformatics | Immunoscore | Tumor infiltrating lymphocytes (TILs) | Checkpoint blockade | Biomarkers | Tumor microenvironment | Solid tumors
|
P84
|
Relevance of the microenvironment and MHC class I mediated immune escape mechanisms of tumors for anti-tumoral immune responses
|
Barbara Seliger1
|
1Institute of Medical Immunology, Halle, Germany
|
Tumor microenvironment | Immune contexture | Tumor evasion | Immune monitoring | Tumor infiltrating lymphocytes (TILs) | Solid tumors | Immune suppression | Immunoscore | T cell | Biomarkers
|
P85
|
HAAH and MMP9 are Complementary Cancer Biomarkers and Together Potentially Enhanced Predictors of Metastasis
|
Mark Semenuk1, Eleanor Ghanbari1, Anokhi Cifuentes1, Anjali Kalra1, Michael Lebowitz1, Hossein Ghanbari1
|
1Panacea Pharmaceuticals Inc, Gaithersburg, MD, USA
|
Biomarkers | Tumor antigens | Tumor microenvironment | Tumor evasion
|
P86
|
Altered immune cell repertoire and activity after checkpoint blockade immunotherapy with nivolumab in renal cell carcinoma
|
Michael Staehler1, Chiara Massa2, Annabel Spek1, Daniel Bethmann2, Jurgen Bukur2, Anja Mueller2, Claudia Wickenhauser2, Bernard A. Fox3, Barbara Seliger2
|
1Ludwig Maximilian University, Munich, Germany 2Martin Luther University, Halle, Germany 3Robert W. Franz Cancer Research Center, Portland, OR, USA
|
Biomarkers | Checkpoint blockade | Solid tumors
|
P87
|
Results of epigenetic-based quantitative PCR assisted immune cell counting analysis in bavituximab SUNRISE trial subgroup
|
Nikoletta L. Kallinteris1, Thomas O. Kleen2, Min Tang1, Shen Yin1, Tobi Guennel3, Jennifer Lai1, Victor Nowakowski2, Steven Olek2, Steve King1, Joseph S. Shan1
|
1Peregrine Pharmaceuticals, Tustin, CA, USA 2Epiontis GmbH, Berlin, Germany 3Precision Medicine, Frederick, MD, USA
|
Biomarkers | Clinical trial | Antibody | Monocyte/Macrophage | MDSC | Checkpoint blockade | Immune suppression | T cell | NK/NK T cell | Regulatory T cell (Treg)
|
P88
|
CD96, a new candidate for checkpoint blockade in human hepatocellular carcinoma
|
Zhigang Tian1, Cheng Sun1
|
1Institute of Immunology, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Medical Science), School of Life Sciences and Medical Center, University of Science & Technology of China, hefei, China
|
Checkpoint blockade | Immune tolerance | NK/NK T cell | Tumor infiltrating lymphocytes (TILs)
|
P89
|
Plasma-derived exosomes carrying CTLA-4, PD-1 and PD-L1 in head and neck squamous cell carcinoma patients treated with immunotherapy is associated with disease outcome
|
Marie-Nicole Theodoraki1, William E. Gooding2, Robert L. Ferris1, Theresa L. Whiteside1
|
1University of Pittsburgh, Pittsburgh, PA, USA 2Hillman Cancer Center, Pittsburgh, PA, USA
|
Immune monitoring | Clinical trial | Checkpoint blockade
|
P90
|
RNA-based immune gene set signatures demonstrate immune modulation by RXDX-106, a novel TAM (TYRO3, AXL, MER) family small molecule kinase inhibitor
|
Elizabeth Tindall1, Heather Ely1, Yumi Yokoyama1, Colin Walsh1, Erin Lew1, Amy Diliberto1, Robin Nevarez1, Jack Lee1, Ian Silverman1, Joanne Oh1, Gary Li1, Amanda Albert1, Jason Christiansen1, Robert Shoemaker1
|
1Ignyta, San Diego, CA, USA
|
Bioinformatics | Tumor microenvironment | Biomarkers | Immunoscore | Gene expression | Immune monitoring
|
P91
|
A harmonized evaluation system for expression of HLA class I antigens in formalin-fixed paraffin embedded cancer tissues
|
Toshihiko Torigoe1, Nobuyoshi Hiraoka2, Naoya Nakamura3, Eri Atsuyama4, Shingo Toji5, Yuji Heike4
|
1Sapporo Medical University School of Medicine, Sapporo, Japan 2National Cancer Center Hospital, Tokyo, Japan 3Tokai University School of Medicine, Isehara, Japan 4St Luke’s International University, Tokyo, Japan 5Medical Biological Laboratories Co., Ltd., Ina, Japan
|
Immune tolerance | Tumor microenvironment | Biomarkers | Immune monitoring | Tumor antigens | Immunoscore | Solid tumors | Tumor evasion
|
P92
|
Early Biomarker Correlates of Severe Neurologic Events and Cytokine Release Syndrome in ZUMA-1, A Multicenter Trial Evaluating Axicabtagene Ciloleucel in Refractory Agressive Non-Hodgkin Lymphoma
|
Frederick Locke1, Marika Sherman2, John Rossi2, Allen Xue2, Michelle Mojadidi2, Sattva Neelapu3, Armin Ghobadi4, Lazaros Lekakis5, David Miklos6, Caron Jacobson7, Olalekan Oluwole8, Tanya Siddiqi9, Yi Lin10, Patrick Reagan11, William Go2, Jeff Wiezorek2, Adrian Bot2
|
1Moffitt Cancer Center, Tampa, FL, USA 2Kite Pharma, Santa Monica, CA, USA 3The University of Texas MD Anderson Cancer Center, Houston, TX, USA 4Washington University School of Medicine, Saint Louis, MO, USA 5University of Miami Health System, Sylvester Comprehensive Care Center, Miami, FL, USA 6Stanford University School of Medicine, Stanford, CA, USA 7Dana-Farber Cancer Institute, Boston, MA, USA 8Vanderbilt-Ingram Cancer Center, Nashville, TN, USA 9City of Hope National Medical Center, Duarte, CA, USA 10Mayo Clinic, Rochester, MN, USA 11University of Rochester Medical Center,, Rochester, MN, USA
|
Antigen presenting cells | Biomarkers | CAR T cells | Leukemia/Lymphoma | T cell | Adoptive immunotherapy | Immune contexture | Inflammation
|
P93
|
Small molecule binders of Ly6K inhibit tumorigenic growth and induce immunity via TGFb/Stat1 and PDL1 pathway
|
Megha Kumar1, Jinya Chen1, Idalia Cruz1, Purushottam Tiwari1, Aykut Uren1, Maksymilian Chruszcz2, Michael B. Atkins1, Louis M. Weiner1, Geeta Upadhyay1
|
1Lombardi Comprehensive Cancer Center, Georgetown University Medical center, Washington, DC, USA 2Lombardi Comprehensive Cancer Center, Georgetown University Medical center, Columbia, SC, USA
|
Tumor microenvironment | Stem cell/cancer-initiating cell | Biomarkers | Immune monitoring | Carcinogenesis | Solid tumors | Checkpoint blockade
|
P94
|
The RareCyte® platform for identifying rare antigen-specific circulating CD4 and CD8 T cells in Merkel cell carcinoma
|
Lance U'Ren1, Natalie Vandeven2, Erika Hayes3, Jennifer Chow1, Jackie Stilwell1, Paul Nghiem2, Eric Kaldjian1
|
1RareCyte Inc., Seattle, WA, USA 2University of Washington, Seattle, WA, USA 3Benaroya Research Institute, Seattle, WA, USA
|
Biomarkers | Checkpoint blockade | Immune monitoring | T cell
|
P95
|
Development and application of a 6-channel immunofluorescence assay for investigating PDL1 and IFR1 expression on circulating tumor cells
|
Lance U'Ren1, Daniel Campton1, Jackie Stilwell1, Eric Kaldjian1
|
1RareCyte Inc, Seattle, WA, USA
|
Biomarkers | Checkpoint blockade | Solid tumors
|
P96
|
Tumor mutation burden, microsatellite instability and chromosomal instability analysis using low pass whole genome sequencing of single circulating tumor cell
|
Angel Rodriguez1, Jerry Lee1, Ramsay Sutton1, Rhett Jiles1, Yipeng Wang1, Mark Landers1, Ryan Dittamore1
|
1Epic Sciences, San Diego, CA, USA
|
Biomarkers | Bioinformatics | Antigen presenting cells | Genetic polymorphism | Stem cell/cancer-initiating cell
|
P97
|
Simultaneous Characterization of Rare Immune cell Subpopulations and PD-L1 expressing CTCs in peripheral blood of cancer patients
|
Adam Jendrisak1, Angel Rodriguez1, Jiyun Byun1, Ryon Graf1, Yipeng Wang1, Mark Landers1, Ryan Dittamore1
|
1Epic Sciences, San Diego, CA, USA
|
Immune tolerance | Immune suppression | Stem cell/cancer-initiating cell | Immune monitoring | Biomarkers | NK/NK T cell
|
P98
|
Immunological profiling of baseline and resected biopsies from locally/regionally advanced/recurrent melanoma treated with neoadjuvant combination ipilimumab (3mg/kg or 10mg/kg) and high dose IFN-α2B
|
Sarah Warren1, Priyanka Vallabhaneni2, Jack El-Sawada2, Andrew White1, Xing Ren1, Alessandra Cesano1, Joseph Beechem1, Ahmad Tarhini2
|
1NanoString Technologies, Inc., Seattle, WA, USA 2Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
|
Immune contexture | Immune tolerance | Biomarkers | Checkpoint blockade | Clinical study | Immune monitoring
|
P99
|
Biomarker analysis from the OpACIN trial (Neo-/adjuvant ipilimumab + nivolumab (IPI+NIVO) in palpable stage 3 melanoma)
|
Lisette (EA) Rozeman1, Lorenzo Franchi1, Thomas Kuilman1, Oscar Krijgsman2, Alexander (ACJ) van Akkooi1, Pia Kvistborg1, Hans van Thienen1, Bauke Stegenga3, Dana Cullen3, Brian Lamon3, John (JBAG) Haanen1, Alessandra Cesano4, Sarah Warren4, Annegien Broeks1, Ton Schumacher1, Christian Blank1
|
1Netherlands Cancer Institute, Amsterdam, Netherlands 2o.krijgsman@nki.nl, Netherlands, Netherlands 3Bristol-Myers Squibb, Lawrence Township, NJ, USA 4NanoString Technologies, Seattle, WA, USA
|
Immune contexture | Immune tolerance | Tumor microenvironment | Biomarkers | Checkpoint blockade | Clinical study | Immune monitoring | Tumor evasion
|
P100
|
Pretreatment gene expression correlation with clinical response to pembrolizumab or nivolumab in metastatic melanoma
|
Sarah Warren1, Patrick Danaher1, Tobias Schatton2
|
1NanoString Technologies, Seattle, WA, USA 2Brigham-Women's Hospital, Boston, MA, USA
|
Bioinformatics | Immune contexture | Immune tolerance | Biomarkers | Immune suppression
|
P101
|
Multiplex Biomarker Detection in FFPE Tumour Samples
|
Mike Millar1, Louise Welch1, Dawn Lyster1, Mariana Beltran1, Sevi Giakoumelou1
|
1Aquila BioMedical, Edinburgh, United Kingdom
|
Tumor microenvironment | Immune monitoring | Biomarkers | Immune contexture | Antigen presenting cells | Myeloid cells | Tumor antigens | B cell | T cell
|
P102
|
Mining the periphery for tumor-relevant B and T cells
|
Katherine L. Williams1, Lukas Pfannenstiel2, Eldar Giladi1, Yvonne Leung1, Xiaobin Tang1, Shuwei Jiang1, Dongkyoon Kim1, Kevin Williamson1, Sean M. Carroll1, Ngan Nguyen1, Gregg Espiritu Santo1, Sini Reponen1, Xiaomu Chen1, Norman M. Greenberg1, Daniel Emerling1, Wayne Volkmuth1, Brian Gastman2, Guy Cavet1
|
1Atreca, Inc., Redwood City, CA, USA 2Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
|
T cell lineages | Immune monitoring | Biomarkers | Antibody | B cell | T cell | Tumor infiltrating lymphocytes (TILs)
|
P103
|
Tumor infiltrating lymphocyte (TIL) percentage as a prognostic biomarker for overall and relapse free survival in Hu14.18-IL2 treated resectable recurrent stage 3 or 4 melanoma patients
|
Richard Yang1, Mark Albertini2, Jacquelyn Hank2, Hans Loibner3, Stephen Gillies4, Paul Sondel2, Erik Ranheim2
|
1University of Wisconsin - Madison Hospitals and Clinics, Madison, WI, USA 2University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI, USA 3Apeiron Biologics, Vienna, Austria 4Provenance Biopharmaceuticals, Carlisle, MA, USA
|
Tumor infiltrating lymphocytes (TILs) | Immune monitoring | Clinical trial | Biomarkers | Tumor microenvironment | Targeted therapy | Surgery | Immune contexture | Clinical study | Antibody
|
P104
|
A study of PD-L1 diagnostic assay concordance in urothelial carcinoma
|
Magdalena Zajac1, Marietta Scott1, Marianne Ratcliffe2, Alan Sharpe1, Paul W Scorer1, Craig Barker1, Hytham Al-Masri3, Marlon Rebelatto4, Jill Walker1
|
1AstraZeneca, Cambridge, United Kingdom 2AstraZeneca, Macclesfield, United Kingdom 3Hematogenix, Tinley Park, IL, USA 4Medimmune, Gaithersburg, MD, USA
|
Biomarkers | Targeted therapy
|
P105
|
Infino: Bayesian inference to distinguish immune cell expression phenotypes, estimate immune infiltration into tumor microenvironment, and investigate exhausted T cell phenotype
|
Maxim Zaslavsky1, Jacqueline Buros Novik1, Eliza Chang1, Alexander Huang2, Josephine Giles2, Robert Orlowski2, E. John Wherry2, Jeffrey Hammerbacher1
|
1Icahn School of Medicine at Mount Sinai, New York, NY, USA 2Perelman School of Medicine, Philadelphia, PA, USA
|
Tumor microenvironment | Biomarkers | Gene expression | Immune contexture | Immunoscore | Tumor infiltrating lymphocytes (TILs)
|
P106
|
Bioinformatic analysis of the tumor immune landscape to prioritize combinations with antibody-drug conjugates (ADCs)
|
Xiaoling Zhang1, Song Wu1, Brandon W. Higgs1, Koustubh Ranade1
|
1MedImmune, Gaithersburg, MD, USA
|
Adoptive immunotherapy | Bioinformatics | Chemotherapy | Tumor microenvironment | Checkpoint blockade | Clinical study | Antibody | Gene expression | Solid tumors
|