

Peripheral T cell expansion predict tumor infiltration and clinical IO response

Jane Grogan CSO, ArsenalBio

[Former employee Genentech – studies represented here]

Changing our understanding of how checkpoint inhibition: reversing T cell "exhaustion" is not the whole story

- Assumed that PD-L1/PD-1 blockade reinvigorates "exhausted" T cells in tumors
- Drug discovery & development has been driven by this view
- It is likely incorrect: blockade may act to *expand* T cell responses

Genentech A Member of the Roche Group

2

Evidence that checkpoint blockade acts to expand or activate T cells

Exhaustion is epigenetically locked by TOX and may be irreversible

• Wherry lab, Schietinger lab, Zhen lab, Wu Lab, Rao lab

Anti-PD-L1/PD-1 expands T stem cell memory cells in infection & tumors, little actual evidence for exhaustion reversal

- Ahmed lab
- Tscm are PD1+/TIGIT+, but TIM3-/Lag3-

CD28 signaling via B7.1 is required for anti-PD-L1 efficacy

• Ahmed lab, Mellman lab

PD-L1 on dendritic cells is key to regulating T cell function by PD-1 in anti-tumor immunity

• Mellman lab, Tang lab

PD-1 therapy elicits recruitment of new TILs, not expansion of preexisting exhausted TILs

• Howard Chang et al; Wu/Grogan, et al

Establishing the origin of expanded TILs during PD-(L)1 therapy:

TCR clonotypes in tumor, normal adjacent tissue, and blood

Wu et al, Nature, 2020

Details can be revealed by studying single T cells

		Single-cell RNA-seq				scTCR-seq		
	~	T cell	s	_ Non-T o	ells		~	
Patient	Src	Transcripts	Cells	Transcripts	Cells	Typed	Clones	
Lung1 (CD3)	Т	27,930,187	7,335	509,263	127	6,105	4,684	
	Ν	17,403,400	5,944	615,976	225	4,376		
Lung2 (CD3)	Т	41,594,246	8,486	1,403,112	297	7,905	6,482	
	Ν	29,248,258	7,105	1,340,805	298	6,312		
Lung3 (CD3)	Т	10,005,925	6,698	476,462	264	4,688	7,011	
	Ν	19,132,841	11,594	680,102	412	7,903		
Lung4 (CD3)	Т	5,258,284	8,992	101,957	189	4,857	4,833	
	Ν	3,254,282	6,120	90,328	168	2,875		
Lung5 (CD45)	т	8,453,692	2,901	10,993,570	2,383	2,377	3,487	
	Ν	8,781,381	3,765	9,056,514	1,959	2,938		
Endol (CD3)	Т	12,131,599	10,670	621,543	404	7,050	5,387	
	Ν	4,498,595	7,278	161,051	290	2,615		
Endo2 (CD3)	т	5,966,732	7,425	384,890	384	3,732	2,190	
	Ν	399,141	1,718	28,921	108	202		
Endo3 (CD3)	Т	9,239,225	5,228	941,197	295	3,929	2,485	
	Ν	203,092	355	9,638	30	131		
Colon1 (CD45)	Т	7,278,551	2,422	6,006,689	1,456	1,969	2,364	
	Ν	4,583,949	1,651	4,499,591	2,053	1,150		
Colon2 (CD45)	Т	1,987,154	642	9,596,073	2,632	594	535	
	Ν	725,454	153	3,729,254	1,486	66		
Lung6 (CD45)	Т	22,118,576	3,809	14,685,726	1,663	3,734	9,948	
	Ν	24,326,797	7,211	7,663,565	1,296	5,847		
	В	18,385,925	4,154	18,526,827	4,081	3,838		
Renal1 (CD45)	Т	4,429,006	2,362	12,984,393	5,003	1,878	1,599	
	Ν	2,046,228	2,698	3,657,947	3,235	1,112		
	в	2,714,048	1,216	7,960,749	3,600	813		
Renal2 (CD45)	Т	9,320,594	2,799	16,150,376	2,730	2,455	3,960	
	Ν	11,104,386	4,270	12,383,975	3,706	3,755		
	В	4,213,162	1,653	20,425,570	6,918	1,388		
Renal3 (CD45)	т	3,095,674	1,308	19,445,899	5,416	707	2,009	
	Ν	5,148,240	1,610	20,697,490	3,993	1,355		
	в	5,508,115	2,051	5,546,902	1,902	1,132		
Total		330,486,739	141,623	211,376,355	59,003	99,788	56,974	

Applied to tumor, Normal Adjacent Tissue (NAT), blood from 14 patients before treatment

↓ ↓

141,623 T cells with 56,974 distinct clonotypes

2

Extensive sharing of clones in tumor and NAT

1016

781

often had sibling clones in the other compartment

Patterns of dual expansion differed across patients

Hypothesis: Could parallel dual expansion be coming from a common source, such as peripheral blood?

Support from our four patients with peripheral blood samples

Integrating scRNA-seq and scTCR-seq data shows different expansion behaviors by T cell subset

Distribution of Clonal Freq Across Cell Types and Sample Sources Expanded clones were detected mostly in Teff, Tem and Trm clusters

Coloring of Cells by Clonal Frequency, Separated by Sample Sources

scRNA-seq data yielded several clusters: Distribution of Exhaustion, Act and Cytolytic Signature Score

Genes encoding T cell effector genes positively correlated with T cell Clonal Expansion

Transcription factors

Cell trafficking & Adhesion

Survival Signals

Clonal Size

T-effector cells (8.1) account for most infiltration from peripheral blood into tumor

Clone sizes correlate between pre-treatment blood and posttreatment tumor

Suggests that peripheral blood may be the source of at least some of the novel clones

Chang, Nat Med, 2019

Could patient variability in peripheral or dual expansion explain clinical response to IO?

Clinical trials of atezolizumab (anti-PDL1) with bulk RNA-seq from pre-treatment tumor (but unfortunately no TCR measurements in tumor or blood)

- IMvigor210: A single-arm trial studying locally advanced or metastatic urothelial carcinoma. 354 patients with bulk RNA-seq samples.
- POPLAR: A dual-arm trial of non-small-cell lung carcinoma comparing 93 patients with bulk RNA-seq treated with atezolizumab and 100 patients with docetaxel chemotherapy
- IMmotion150: A triple-arm trial of renal cell carcinoma treated with atezolizumab (86 patients), atezolizumab plus the VEGF inhibitor bevacizumab (88 patients), or the tyrosine kinase inhibitor sunitinib (89 patients)

Developed a gene signature of clonal expansion in tumors

Wu et al, Nature, 2020

Gene set analysis shows expansion signatures associate with clinical response

Greater clinical response with above-median expression of genes in expansion signatures

Dual-variate analysis of survival using both CD8A and expansion signature scores

Example of dual-variate analysis: IMmotion150, Atezo+Bev arm

Conclusion

- Clonally expanded T cell population found in abundance in both tumor and adjacent normal tissue (NAT)
- A large fraction of T cells shared T cell receptors (TCRs) present in both tumor and NAT that these T cells had an effector phenotype mostly Teff, Tem, Trm clusters
- We identify the source of these T cells in the peripheral blood.
 - the fraction of expanded clones in blood is a proxy for the extent of expansion within the tumor, with up to 87% of those TCRs captured in blood
 - that the extent of peripheral clonal expansion explains many other phenomena, including the appearance of novel T cell clones in tumors after immunotherapy (reported by Yost in 2019) and the presence of virally reactive T cells (reported by Simoni et al. in 2018 and Scheper et al. in 2019)
- These expanded T cell clones predicted response to cancer immunotherapy

A model for clonal expansion of T cells in tumors

- A local, blood-independent expansion that leads to exhausted T cells
- A peripheral, blood-associated expansion that supplies fresh, nonexhausted T cells
- This model causes us to reconsider whether cancer immunotherapy acts by "reversing" exhaustion

A model for clonal expansion of T cells in tumors

Beyond the tumor: What are the peripheral and tissue-specific mechanisms that promote endogenous as well as exogenous TCR- and CAR-T responses

Acknowledgements

Genentech Team

Thomas D. Wu^{1⊠}, Shravan Madireddi², Patricia E. de Almeida², Romain Banchereau³, Ying-Jiun J. Chen⁴, Avantika S. Chitre², Eugene Y. Chiang², Hina Iftikhar², William E. O'Gorman⁵, Amelia Au-Yeung⁵, Chikara Takahashi⁵, Leonard D. Goldstein¹, Chungkee Poon⁶, Shilpa Keerthivasan², Denise E. de Almeida Nagata², Xiangnan Du², Hyang-Mi Lee², Karl L. Banta², Sanjeev Mariathasan³, Meghna Das Thakur⁷, Mahrukh A. Huseni⁷, Marcus Ballinger⁷, Ivette Estay⁷, Patrick Caplazi⁸, Zora Modrusan⁴, Lélia Delamarre², Ira Mellman², Richard Bourgon¹ & Jane L. Grogan^{2,9⊠}

ArsenalBio

David DeTomaso, Grace Zheng

