

SITC Cancer Immune Responsiveness Workshop May 14 ${ }^{\text {th }} 2018$

Katerina Politi, PhD Associate Professor
Departments of Pathology and Internal Medicine Yale School of Medicine

Disclosures

- Co-Inventor on a Patent Licensed to Molecular MD for EGFR T790M mutation testing (through MSKCC).
- Consultant fees: Takeda, NCCN, Novartis, Merck, AstraZeneca, Tocagen
- There will be discussion about the use of products for non-FDA approved indications in this presentation
- I receive/d research support from AstraZeneca, Kolltan, Roche, Gilead and Symphogen.

Timeline of Recent Advances in Lung Cancer

Targeted therapies and immunotherapies have transformed the lung cancer treatment landscape

Immune Checkpoints as Therapeutic Targets

Nivolumab (anti-PD1)
$2^{\text {nd }}$ line approval 2015
Pembrolizumab (anti-PD1)
$2^{\text {nd }}$ line approval 2015
1st-line approval 2016
PD-L1 positive tumors
Atezolizumab (anti-PDL1)
$2^{\text {nd }}$ line approval 2015

Immune Checkpoint Inhibitors are Frequently Not Curative in Lung Cancer

What are the cellular and molecular mechanisms of acquired resistance to immune checkpoint inhibitors in lung cancer?

Cohort of Patients with Resistance to Immune

 Checkpoint Inhibitors
+/-Intervening Therapy

- Tumor Tissue
- Germline DNA

Anti-PD-L1/ Anti-CTLA-4 $n=1$

- Tumor Tissue - PDX

Anti-PD-1/
Anti-CTLA-4
$\mathrm{n}=2$

EGFR TKI/ Anti-PD-1 (after progression on EGFR TKI)
$\mathrm{n}=1$

Acquired Resistance to Anti-PD-L1 plus Anti-CTLA4

Gettinger, Choi, Hastings, Truini, Datar et al., Cancer Disc. 2017

What is Next?

A Transplantable Lung Cancer Model with Sensitivity to PD-1 Blockade

Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies

Arantza Azpilikueta, BSc, ${ }^{\text {a }}$ Jackeline Agorreta, PhD, ${ }^{\text {b,c }}$ Sara Labiano, BSc, ${ }^{\text {a }}$ José Luis Pérez-Gracia, MD, PhD, ${ }^{\text {d }}$ Alfonso R. Sánchez-Paulete, BSc, ${ }^{\text {a }}$ M. Angela Aznar, PhD, ${ }^{\text {a }}$ Daniel Ajona, PhD, ${ }^{\text {b,e }}$ Ignacio Gil-Bazo, MD, PhD, ${ }^{\text {d }}$ Marta Larrayoz, PhD, ${ }^{\text {a,c }}$ Alvaro Teijeira, PhD, ${ }^{\text {a }}$ María E. Rodriguez-Ruiz, MD, PhD, ${ }^{\text {b }}$ Ruben Pio, PharmD, PhD, ${ }^{\text {b,e }}$ Luis M. Montuenga, PhD, ${ }^{\text {b,c }}$ Ignacio Melero, MD, PhD ${ }^{\text {a,d, }, ~}$
${ }^{\text {a }}$ Department of Immunology, Center for Applied Medical Research, Universidad de Navarra
${ }^{5}$ Program in Solid Tumors and Biomarkers, Center for Applied Medical Research, Universidad de Navarra ${ }^{\text {'D Department }}$ of Histology and Pathology, Universidad de Navarra
Department of Oncology and Clinical Trial Unit, Clínica Universidad de Navarra
${ }^{e}$ Department of Biochemistry and Genetics, Universidad de Navarra

- UN-SCC680AJ line derived from NCTU carcinogen treatment
- ~200 non-synonymous mutations

UNSCC680AJ (AJ WT) (PD-1 pilot)

B2M Loss Confers Resistance to anti-PD1 In Vivo

Testing other Candidate Resistance Drivers of Acquired Resistance to ICls

Modeling and Overcoming Resistance to ICls

B2M Loss at Resistance to ICls in PDXs

Multiple Genetic and Non-genetic Processes can Lead to Defects in MHC I Antigen Presentation

Immune inhibitory signaling?

Epigenetic silencing of MHC I genes? Other mechanisms?

Summary

Transplantable models can be used to model resistance to ICls in vivo and to study approaches to overcome resistance.

PDXs of tumors resistant to immune checkpoint inhibitors are valuable tools to understand the permissiveness of the tumor to respond to immune stimulation and confirm genomic alterations.

Treatment Paradigms for EGFR Mutant Lung Cancer

Mouse Models of EGFR Mutant Lung Cancer

> Immuno-competent
Mutant EGFR expressed mouse model
in Type II lung epithelial cells when mice are given doxycycline
> Tetracycline inducible
> Reversible

Weeks
0-Pretreatment 3-ON Erlotinib 22-ON Erlotinib
Tumor volume

Politi et al., 2006
Regales et al., 2007 Politi et al., 2010

Takezawa et al., 2012 De Bruin et al., 2014 Pirazzoli et al., 2014

The Immunosuppressive Microenvironment in Murine EGFR ${ }^{\text {L858R }}$-induced Lung Adenocarcinomas is Partially Reversed by Erlotinib.

CCSP-rtTA; TetO-EGFRR ${ }^{\angle 858}$

Ayeni et al., bioRxiv 254847; doi: https://doi.org/10.1101/254847

Changes in T cells in the Immune Microenvironment are Due to Tumor Regression

CCSP-rtTA; TetO-EGFR ${ }^{L 858 R}$

Summary

Genetically engineered mouse models can be valuable tools to study:

- What the characteristics of the immune microenvironment are in specific tumor models.
- How therapies like EGFR TKIs modulate the immune microenvironment.
- What role immune cells play in tumorigenesis and response to therapy.
- What is the therapeutic efficacy of drug combinations that include immunotherapies.

There are limitations to these models. For example, the tumor mutational burden is often different between the mouse tumors and human tumor.

The Politi Lab

medicine.yale.edu/labs/politi

Acknowledgements

Funding

National Cancer Institute Department of Defense Su2C-AACR
Yale Cancer Center
AstraZeneca
Roche
SWOG
Symphogen

Yale
Scott Gettinger
Guoping Cai
lla Datar
Sarah Goldberg
Roy Herbst
Rick Lifton
Yossi Schlessinger
Jungmin Choi
Kurt Schalper
David Rimm

Yale

Weilai Dong
Anne Chiang
Ed Kaftan
Paula Kavathas
Susan Kaech
Ryan Sowell
Victor Du
Sarah Goldberg
Miguel Sanmammed

Univ de Navarra

Ignacio Melero Luis Montuenga Jackeline Agorreta

MGH
Soldano Ferrone

