## SITC 2017

Ő

November 8-12 NATIONAL HARBOR MARYLAND

**Gaylord National Hotel** & Convention Center



Society for Immunotherapy of Cancer

SITC

#### **Challenges in Clinical Development**

**Michael Postow** 

Melanoma and Immunotherapeutics Service

Memorial Sloan Kettering Cancer Center



#SITC2017

#### **Presenter Disclosure Information**

#### **Michael Postow**

The following relationships exist related to this presentation:

Advisory Board: Array BioPharma, BMS, Incyte, Merck, NewLink Genetics, Novartis

**#SITC2** 

Honoraria: BMS and Merck



### Where were we?

 Needed to convince scientific and clinical community immunotherapy can actually work

• Expand beyond immunotherapy sensitive cancers (melanoma, renal cell carcinoma, and hematologic malignancies)

#### SITC 2017 November 8-12 • NATIONAL HARBOR, MD





#### SITC 2017 November 8-12 • NATIONAL HARBOR, MD







### Where are we now?

- Checkpoint blockade and cellular based therapies demonstrating efficacy in many tumors with better understanding of toxicity management
- One FDA approved combination of immune checkpoint blocking antibodies (nivolumab and ipilimumab in melanoma)
- Many different agents/combinations in earlier stages of evaluation



## What are the challenges?

• Limitations to predictive capabilities of preclinical models

• Assessment of toxicity in early phase, dose-finding studies

 Expectation of efficacy from early study to late phase, randomized studies



### **Limitations to Preclinical Models**

- Syngeneic orthotopic murine models not great parallel for human cancer
- Patient derived xenografts difficult
- Checkpoint blockade alone does not work in many models where it can work in patients



## Preclinical models do not always predict indication specific efficacy



Twyman-Saint Victor et al. Nature 2015



## **Challenges to Toxicity Assessment**

- 1. Difficulty of preclinical models to assess toxicity
- 2. MTD or "optimal immunologic effect"?
- 3. Assess toxicities of combination approaches?



#### Toxicity Time Course for Nivolumab (n=576, melanoma)



ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE Weber et al. Journal of Clin Oncol 2016



#### **Dose dependency of immunotherapy?**

- 1. Higher ipilimumab doses associated with better overall survival [1]
- 2. No obvious dose dependency for anti-PD-1 [2]

[1] Ascierto et al. *Lancet Oncol* 2017[2] Robert et al. *NEJM* 2015



## Dose to a pharmacodynamic biomarker?





#### Pembrolizumab increases Ki67+ CD8+ T cells



N=18; p<0.0001 (paired ttest)

ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Huang A, Postow M, Orlowski R, et al. *Nature* 2017



# Assess efficacy from early studies to late development?



## Main difference between RECIST and immune related response criteria is declaration of progression

| Outcome             | RECIST*                                    | Immune Related Criteria** |
|---------------------|--------------------------------------------|---------------------------|
| Complete Response   | Disappearance of targets                   | Disappearance of targets  |
| Partial Response    | ≥30% decrease in targets                   | ≥30% decrease in targets  |
| Stable Disease      | Everything else                            | Everything else           |
| Progressive Disease | ≥20% increase in targets<br>Any new lesion | ≥20% increase in targets  |

\*Eisenhauer et al. *Eur J Cancer* 2009 \*\*Nishino et al. *Clin Cancer Res* 2013



# Are responses to immunotherapy really "unique"?



54 nivolumab patients treated beyond POD17 (8% of total of pts) eventually had 30% reduction

49 dacarbazine patients treated beyond POD8 (4% of total pts) eventually had 30% reduction





Time Since Treatment Initiation (Weeks)

Robert et al, NEJM 2015



1. Does new treatment alter prior tumor growth kinetics?









ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE







- 1. Does new treatment alter prior tumor growth kinetics?
- 2. Start combination for "biomarker unfavorable" patients?



#### Traditional biomarker concept



## Finding a specific patient for a specific treatment

## (i.e. Patient with a BRAF V600E mutation for dabrafenib)



#### Amended immunotherapy biomarker concept





- 1. Does new treatment alter prior tumor growth kinetics? (Add additional agent to PD-1 non-responders?)
- 2. Start combination for "biomarker unfavorable" patients?
- 3. Neoadjuvant Trials
  - Quick interpretation of tissue PD effects/efficacy
  - Does macroscopic efficacy = microscopic efficacy?



## **Summary of Clinical Challenges**

- 1. Develop better preclinical model systems
- 2. Understanding why immunotherapy does not work in patients will likely shed some light
- 3. Need creative trial designs and meaningful endpoints that meet regulatory expectations







## Back-Up



## Example of early to late immunotherapy combination development



#### **CTLA-4 and PD-1 Combination**



ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Kyi and Postow FEBS Letters 2014



#### Nivolumab + Ipilimumab higher response rate than ipilimumab alone



ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

#### Postow et al., *NEJM* 2015



#### What about comparing combination to PD-1?

|                              | NIVO + IPI<br>(N = 314) | NIVO<br>(N = 316)         | IPI<br>(N = 315)  |
|------------------------------|-------------------------|---------------------------|-------------------|
| Median PFS, months (95% CI)  | 11.5 (8.7, 19.3)        | 6.9 (5.1, 9.7)            | 2.9 (2.8, 3.2)    |
| HR vs IPI                    | 0.43 (0.35, 0.52)       | 0.55 (0.45, 0.66)         | -                 |
| HR vs NIVO                   | 0.78 (0.64, 0.96)       |                           | -                 |
| ORR, % (95% CI) <sup>a</sup> | 58.3 (52.6, 63.8)       | 44.3 (38.7 <i>,</i> 50.0) | 18.7 (14.6, 23.5) |
| Best overall response, %     |                         |                           |                   |
| Complete response            | 19.4                    | 16.5                      | 5.1               |
| Partial response             | 38.9                    | 27.8                      | 13.7              |
| Median DOR, months (95% CI)  | NR                      | NR (36.3, NR)             | 19.3 (8.3, NR)    |

Wolchok et al. NEJM 2017



#### Assessing differences in response rates vs. overall survival



ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Wolchok et al. NEJM 2017

#### Eliminating IDO enhances checkpoint blockade in mice



Holmgaard et al. *JEM* 2013 Spranger *J Immunother Cancer* 2014

sitc

Society for Immunotherapy of Cancer



#### Late responses to PD-1 are rare (approximately 5-10%)



ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Weber et. al *Lancet Oncol* 2015 Hodi et al. *JCO* 2016