

Immunotherapy of Hematologic Malignancies

Madhav Dhodapkar, MD

Professor

Yale School of Medicine

Association of Community Cancer Centers

Society for Immunotherapy of Cancer

Disclosures


- Bristol-Myers Squibb, Genetech, Inc., Hoffmann-La Roche Ltd; Consulting Fees
- I will be discussing non-FDA approved indications during my presentation.

Diversity of Human Tumors

Association of Community Cancer Center

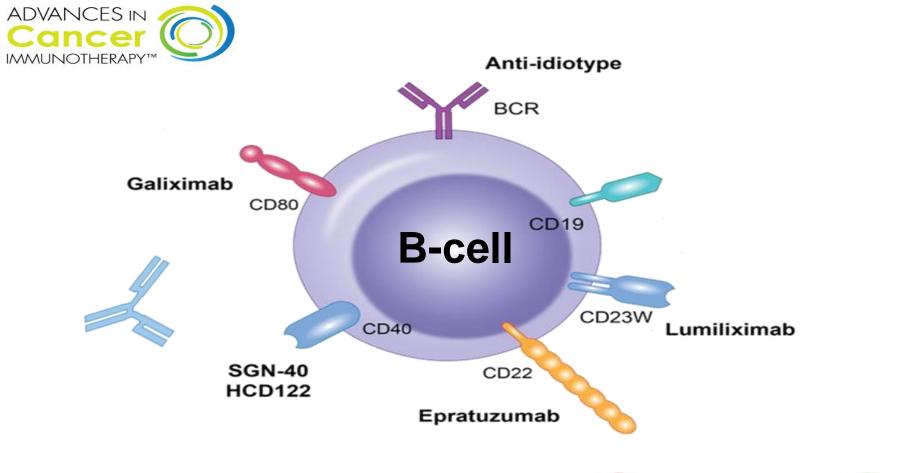
Some Examples of Immune Therapies in Hematologic Malignancies

- Antibodies
- Immunomodulatory drugs

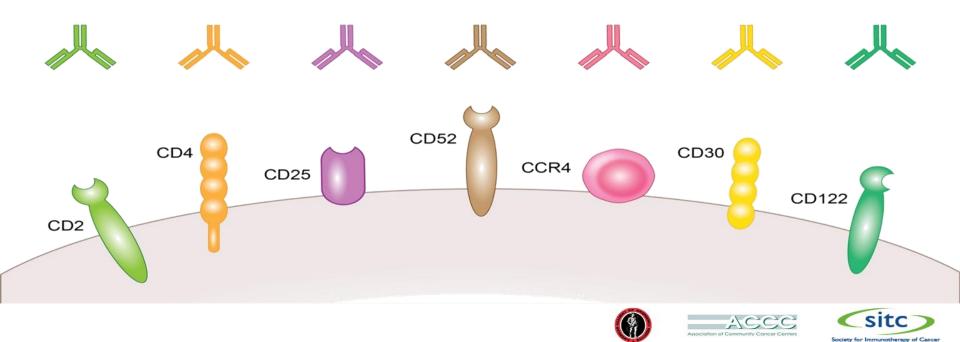
- Immune checkpoint inhibitors
- Adoptive cell therapies, including CAR-T cells
- BiTEs

Patient Selection Criteria for Immune-Based Approaches

- Expression of the desired antigen for CAR-T therapy:
 - e.g. CD19 or BCMA for CAR-T cells
- Disease burden
 - <30% in certain CAR-T trials to minimize the risk of cytokine release syndromes
- Expression of the ligand for checkpoint inhibition
 - e.g. PD-L1 expression for anti-PD-1 therapy
- Presence of co-morbidities:



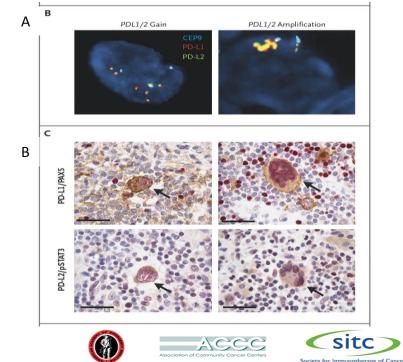
Lymphomas

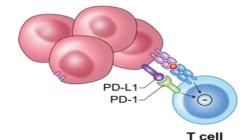


ACCC

Several monoclonal antibodies targeting T-cell lymphomas

Case Study #1


19-year-old female with a history of Hodgkin's lymphoma with two prior relapses including ABVD and an autologous stem cell transplant now presents with fevers, night sweats and shortness of breath. Chest CT confirms a large mediastinal mass with axillary adenopathy. Biopsy of a lymph node confirms disease recurrence.



PD-L1 Expression in Hodgkin's Lymphoma

- Reed-Sternberg cells express both PD-L1 and PD-L2
- Expression of ligands increases with advanced disease
- Unclear whether PD-L1/L2 expression correlates with response to treatment Ansell SM et al. N Engl J Med 2015;372:311-319

Anti-PD-1 in Hodgkin's Lymphoma

Table 3. Clinical Activity in Nivolumab-Treated Patients.*				
Variable	All Patients (N=23)	Failure of Both Stem-Cell Transplantation and Brentuximab (N=15)	No Stem-Cell Transplantation and Failure of Brentuximab (N=3)	No Brentuximab Treatment (N=5)†
Best overall response — no. (%)				
Complete response	4 (17)	1 (7)	0	3 (60)
Partial response	16 (70)	12 (80)	3 (100)	1 (20)
Stable disease	3 (13)	2 (13)	0	1 (20)
Progressive disease	0	0	0	0
Objective response				
No. of patients	20	13	3	4
Percent of patients (95% CI)	87 (66–97)	87 (60–98)	100 (29–100)	80 (28–99)
Progression-free survival at 24 wk — % (95% CI)‡	86 (62–95)	85 (52–96)	NCJ	80 (20–97)
Overall survival — wk				
Median	NR	NR	NR	NR
Range at data cutoff¶	21–75	21–75	32–55	30–50

* NC denotes not calculated, and NR not reached.

 \dagger In this group, two patients had undergone autologous stem-cell transplantation and three had not.

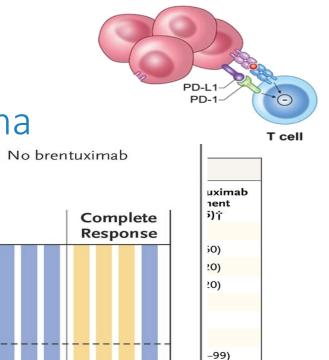
‡ Point estimates were derived from Kaplan–Meier analyses; 95% confidence intervals were derived from Greenwood's formula.

 \S The estimate was not calculated when the percentage of data censoring was above 25%.

Responses were ongoing in 11 patients.

Ansell SM et al. N Engl J Med 2015;372:311-319

B


Table :

Variab

Best of

Co

Pa

-97)

50

Anti-PD-1 in Hodgkin's Lymphoma

ASCT failure and

Change in Tumor Burden

10 -

0-

-10-

Stable

Disease

brentuximab failure

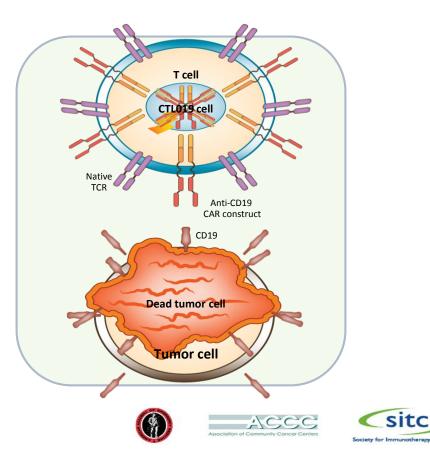
-20-Sta Change (%) Pro -30-Object -40-No -50 Pe -60-Progre -70--80-Overal Me -90-Ra -100-Individual Patient Data (N=23) * NC de † In this ± Point € \S The estimate was not calculated when the percentage of data censoring was above 25%. Responses were ongoing in 11 patients.

No ASCT and

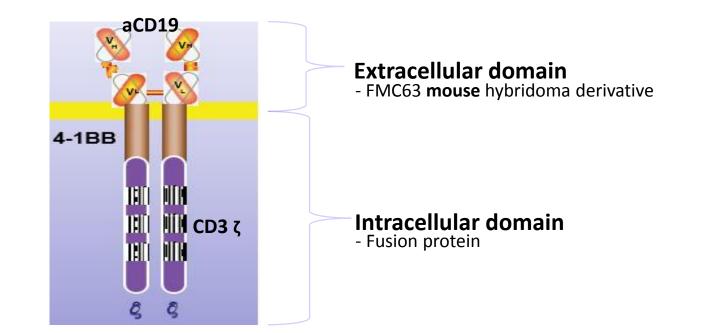
brentuximab failure

Partial Response

Ansell SM et al. N Engl J Med 2015;372:311-319


Nivolumab in R/R B Cell Malignancies: Efficacy

Types	N	ORR, n (%)	CR, n (%)	PR, n (%)	SD, n (%)
B cell lymphoma	29	8 (28)	2 (7)	6 (21)	14 (48)
DLBCL	11	4 (36)	1 (9)	3 (27)	3 (27)
FL	10	4 (40)	1 (10)	3 (30)	6 (60)
T cell lymphoma	23	4 (17)	0	4 (17)	10 (43)
Mycosis fungoides	13	2 (15)	0	2 (15)	9 (69)
PTCL	5	2 (40)	0	2 (40)	0
Multiple myeloma	27	0	0	0	18 (67)
Primary mediastinal B-cell lymphoma	2	0	0	0	2 (100)



Redirecting the Specificity of T cells

- Gene transfer technology stably expresses CARs on T cells^{1,2}
- CAR T cell therapy takes advantage of the cytotoxic potential of T cells, killing tumor cells in an antigen-dependent manner^{1,3}
- Persistent CAR T cells consist of both effector (cytotoxic) and
- 1. Milone MC, et al. Mol Ther. 2009;17:1453-1464.
- Hollyman D, et al. J Immunother. 2009;32:169-180.
 KTICELLSAACE MONECTOSS: PESISTANT tO chemotherapy

CAR T-cell therapies in DLBCL Efficacy and safety

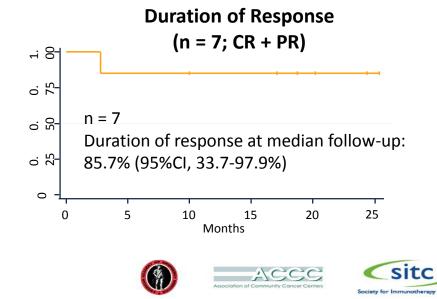
	CTL019 ¹	КТЕ	-C19 ^{2,3}	JCAR017 ^{4,5}
Disease state	r/r DLBCL	r/r DLBCL	r/r TFL/PMBCL	r/r DLBCL, NOS, tDLBCL, FL3B
Pts treated, n	85	77	24	28
Follow-up, median	NR	NR 8.7 mo		NR
Efficacy				
ORR (best response)	59%	82%	83%	80%ª
CR (best response)	43%	54%	71%	60% ª
CR (3 months)	37%	NR	NR	45%
CR (6 months)	NR	31%	50%	NR
Safety				
CRS	31% grade 1/2; 26% grade 3/4	13% grade ≥3		36% grade 1/2; 0% grade 3/4
Neurotoxicity	13% grade 3/4	28%	grade ≥3	4% grade 1/2; 14% grade 3/4

^a20 pts with DLBCL were evaluated for efficacy.

CR, complete response; CRS, cytokine release syndrome; NR, not reported; ORR, overall response rate.

1. Schuster, SJ, et al. ICML 2017 [abstract 007]. 2. Locke FL, et al. AACR 2017 [abstract CT019]; 3. Locke FL, et al. ASCO 2017 [abstract 7512]; 4. Abramson JS, et al. Blood. 2016;128(22) [abstract 4192]; 5. Abramson JS, et al. ASCO 2017 [abstract 7513].

CAR T-cell therapies in DLBCL UPENN Single Institution Study

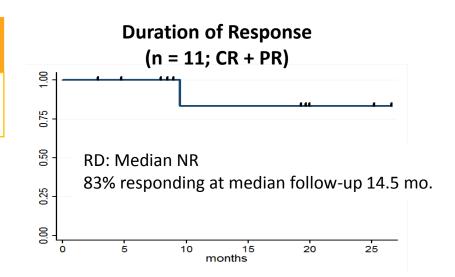

- Results from a single-center, phase 2 study at the University of Pennsylvania showed durable remissions with a single infusion of CTL019 in r/r DLBCL (Cohort A)^{1,2}
 - No patient in CR at 6 months has relapsed (median follow-up, 23.3 months)

	(N = 15)	
	Month 3	Month 6
ORR	7 (47%)	7 (47%)
CR	3 (20%)	6 (40%)
PR	4 (27%)	1 (7%)

Response Rates

CR, complete response; DLBCL, diffuse large B-cell lymphoma; ORR, overall response rate; PR, partial response.

1. Schuster SJ, et al. *Blood*. 2015;126(23):[abstract 183]. 2. Schuster SJ, et al. *Blood*. 2016;128(22):[abstract 3026].



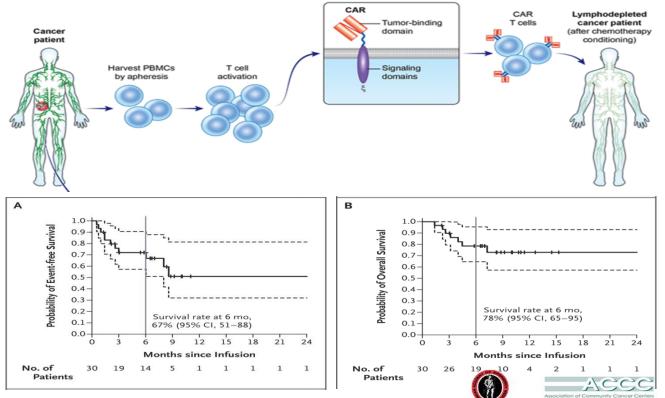
CAR T-cell therapies in FL UPENN Single Institution Study

FL: ORR at 3	mo. 79%	FL: Best Response Rate 79%
(N = 14)	(N = 14)
- CR: 7 - PR: 4 - PD: 3	(50%)	- CR: 10 (71%) - PR: 1 - PD: 3

- 3 patients with PRs by anatomic criteria at 3 months converted to CRs by 6 months
- 1 patient with PR at 3 months who remained in PR at 6 and 9 months had PD

Chong EA, et al. Blood. 2016;128:abstract1100.

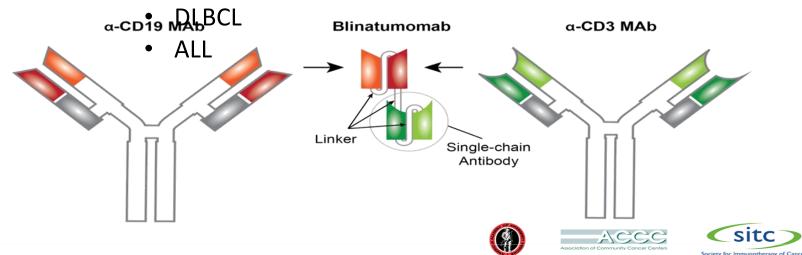
Leukemia

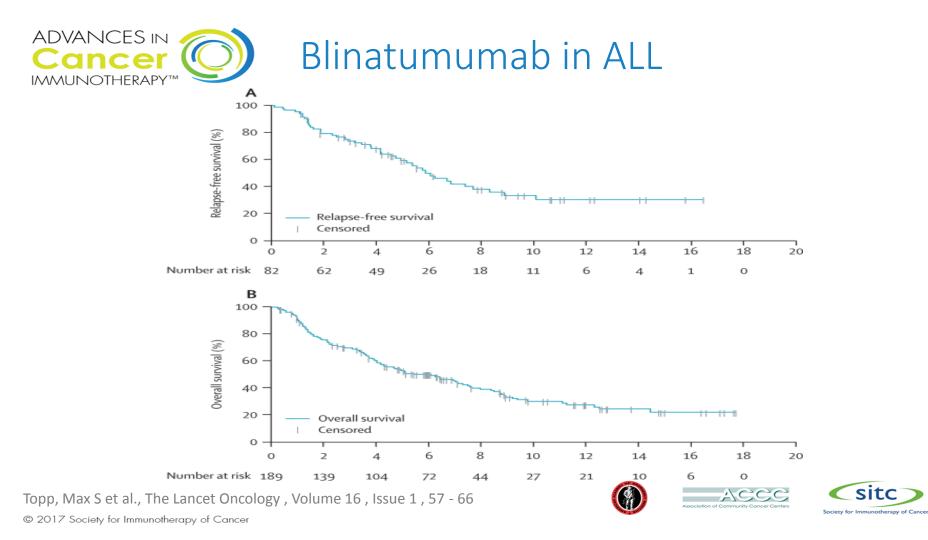


CD-19 CAR-T in ALL

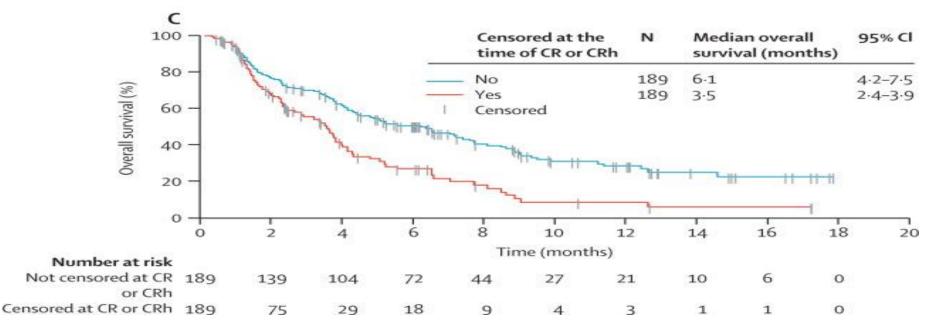
Probability of Event-Free and Overall Survival at Six Months.

Maude SL et al. N Engl J Med 2014;371:1507-1517.


Eliana Trial- CTL-019 in ALL


- Phase II Pivotal Trial of CTL-019 (tisagenlecleucel; KYMRIAH) in relapsed/refractory pediatric/young adult ALL.
- Global enrollment across 25 centers.
- CR / CR with incomplete hem recovery): 83%
- RFS: 75% at 6 months; 64% at 12 months
- OS: 89% at 6 months; 79% at 12 months
- 47% G3 or 4 CRS

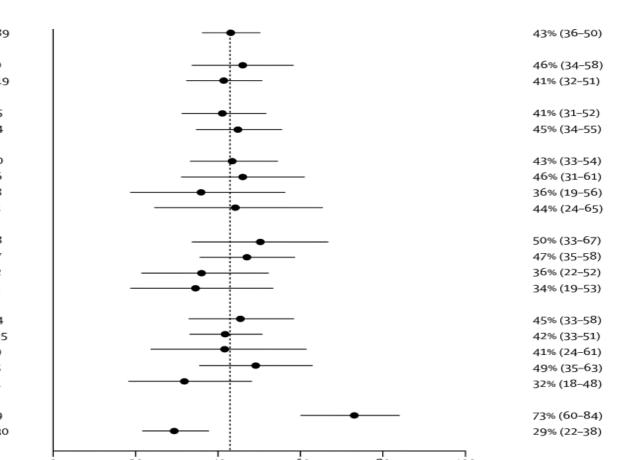
Grupp et al. EHA June 2017



- Combines the F(ab) of an antibody with an anti-CD3 F(ab)
- Lacks the Fc region
- Requires continuous infusions
- Shown considerable activity in:
 - Follicular NHL

Topp, Max S et al., The Lancet Oncology, Volume 16, Issue 1, 57 - 66

© 2017 Society for Immunotherapy of Cancer



Blinatumumab in ALL

All patients	81/189
Sex	
Women	32/70
Men	49/119
Geographical region	
Europe	39/95
USA	42/94
Age group (years)	
18 to <35	39/90
35 to <55	21/46
55 to <65	10/28
≥65	11/25
Previous salvage therapy	
No previous salvage	19/38
1 previous salvage	36/77
2 previous salvage	15/42
>2 previous salvage	11/32
Disease state	
Previous HSCT	29/64
No previous HSCT	52/125
No previous HSCT, no previous salvage	12/29
No previous HSCT, 1 previous salvage	27/55
No previous HSCT, ≥2 previous salvage	13/41
Bone-marrow blasts	
<50%	43/59
≥50%	38/130

Antigen-specific Approaches in ALL

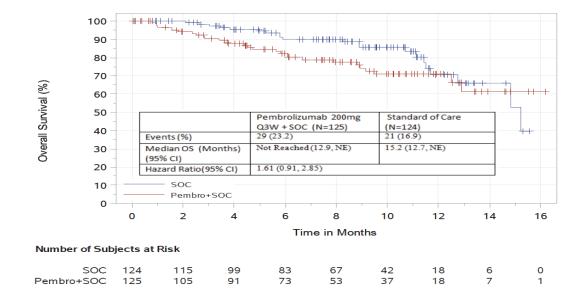
Technology:	CART	ADC	BiTE
Example	CART-19	Inotuzumab (anti-CD22 + toxin)	Blinatumumab (anti- CD3/CD19)
Dosing	One infusion	Every 3 weeks	Continuous 28 days
Complete Response	90%	19%	66%
Survival	78% 6 mos OS	5-6 months median	9 mos median
Major toxicity	Cytokine release	Hepatotoxicity	Cytokine release
Antigen loss relapse?	Yes	No	Yes
Challenges	Complex manufacturing, individualized	Lower response rates	Burdensome infusion

Myeloma

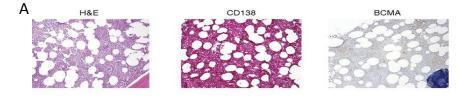
Combination Therapies

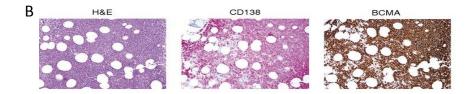
Pembrolizumab + *Lenalidomide: Response Rates*

N (%)	Total N = 17	Len Refractory* N = 9
Overall Response Rate	13 (76)	5 (56)
Very Good Partial Response	4 (24)	2 (22)
Partial Response	9 (53)	3 (33)
Disease Control Rate ⁺	15 (88)	7 (78)
Stable Disease	3 (18)	3 (33)
Progressive Disease	1 (6)	1 (11)


*3 patients double refractory and 1 triple refractory (Len/Bor +Pom) †Disease Control Rate = CR +VGPR + PR + SD >12 weeks.

FDA Alert: Pembro in combination with IMiDs; Aug 2017

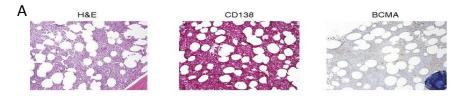

FDA website

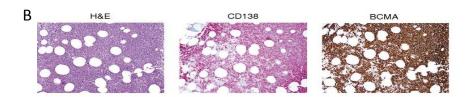


Case Study #2

Two patients with multiply relapsed myeloma considering participation in a BCMA CAR-T cell trial.

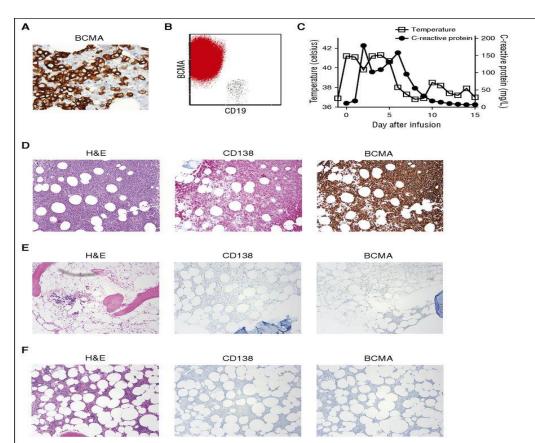
Enrollment BM biopsy shows the following staining

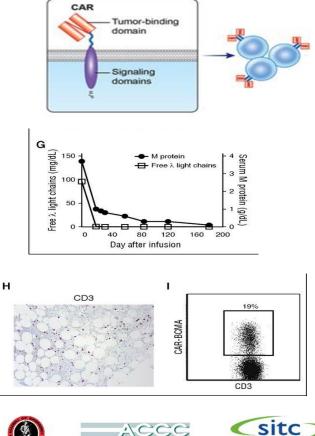




Which of the following statements is true?

- A.Pt A more likely to respond to BCMA CAR-T cell therapy
- B.Pt B more likely to suffer from cytokine release syndrome (CRS) following BCMA CAR-T cell therapy
- syed AGaGRSaisidadependent of disease





ADVANCES IN Efficacy of BCMA CAR-T in Myeloma

Sved Abbas Ali et al. Blood 2016:128:1688-1700

Association of Community Cancer Centers

Society for Immunotherapy of Cancer

Types of Vaccines Used in Myeloma

VACCINE

- Non-Antigen Specific
 - Attenuated measles
 - Whole cell GM-CSF
 - Dendritic tumor fusions

- Antigen Specific
 - Idiotype: RNA, DNA, protein
 - Pulsed dendritic cells
 - Tumor-specific peptides

Resources:

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis^{1†}, Michael R. Bishop^{2†}, Rafat Abonour³, Kenneth C. Anderson⁴, Stephen M. Ansell⁵, David Avigan⁶, Lisa Barbarotta⁷, Austin John Barrett⁸, Koen Van Besien⁹, P. Leif Bergsagel¹⁰, Ivan Borrello¹¹, Joshua Brody¹², Jill Brufsky¹³, Mitchell Cairo¹⁴, Ajai Chari¹², Adam Cohen¹⁵, Jorge Cortes¹⁶, Stephen J. Forman¹⁷, Jonathan W. Friedberg¹⁸, Ephraim J. Fuchs¹⁹, Steven D. Gore²⁰, Sundar Jagannath¹², Brad S. Kahl²¹, Justin Kline²², James N. Kochenderfer²³, Larry W. Kwak²⁴, Ronald Levy²⁵, Marcos de Lima²⁶, Mark R. Litzow²⁷, Anuj Mahindra²⁸, Jeffrey Miller²⁹, Nikhil C. Munshi³⁰, Robert Z. Orlowski³¹, John M. Pagel³², David L. Porter³³, Stephen J. Russell⁵, Karl Schwartz³⁴, Margaret A. Shipp³⁵, David Siegel³⁶, Richard M. Stone⁴, Martin S. Tallman³⁷, John M. Timmerman³⁸, Frits Van Rhee³⁹, Edmund K. Waller⁴⁰, Ann Welsh⁴¹, Michael Werner⁴², Peter H. Wiernik⁴³

