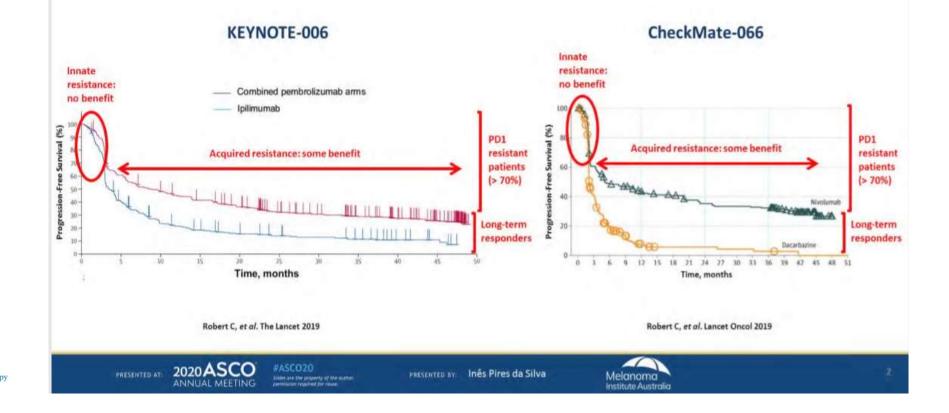
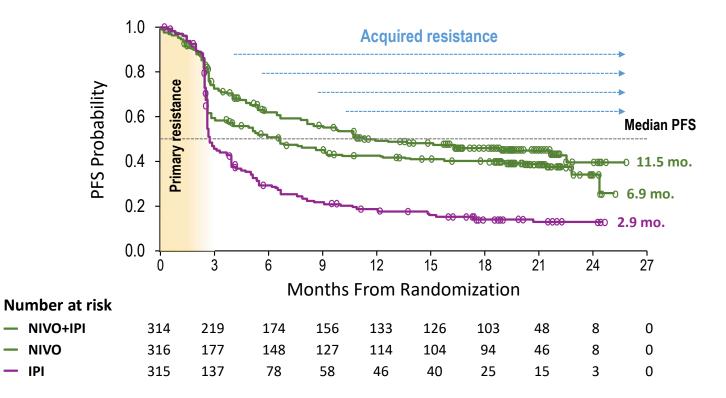
What's Next for Cancer Immunotherapy?

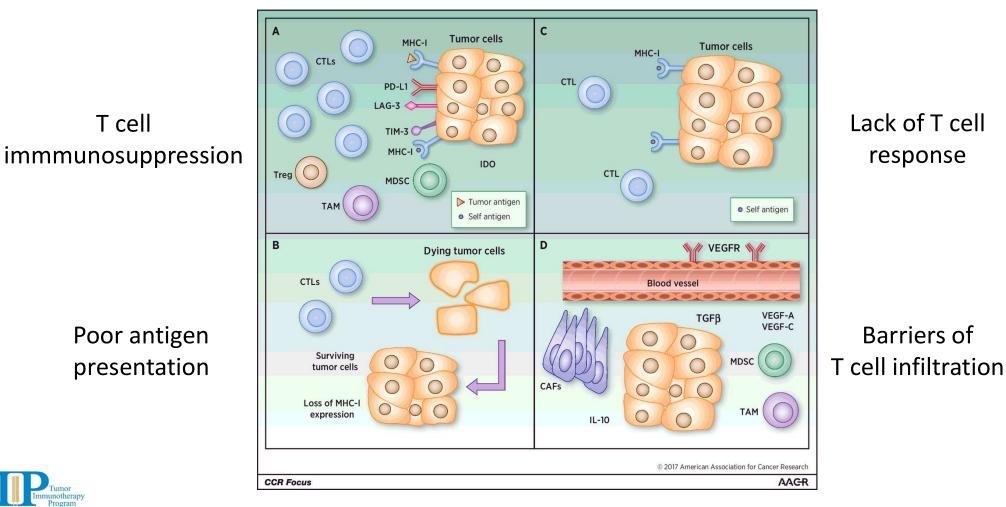
Marcus Butler, MD December 8, 2020

Disclosures

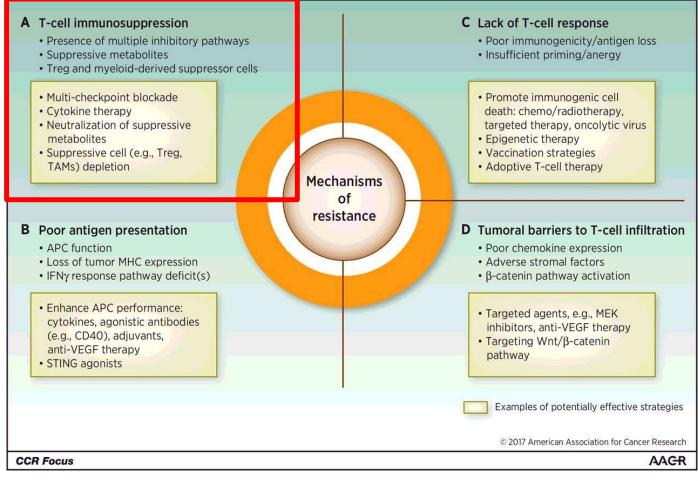

- Consulting Fees: Bristol-Myers Squibb, EMD Serono, GSK, Immunocore, Immunovaccine, Merck & Co., Novartis, Sanofi-Genzyme, Turnstone Biologics, Sun Pharma
- Contracted Research: Merck, Takara Bio

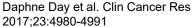

Even in Melanoma: Resistance develops

Background: 2/3 of advanced melanoma patients are resistant (innate or acquired) to PD1 monotherapy


Even in Melanoma: Resistance develops

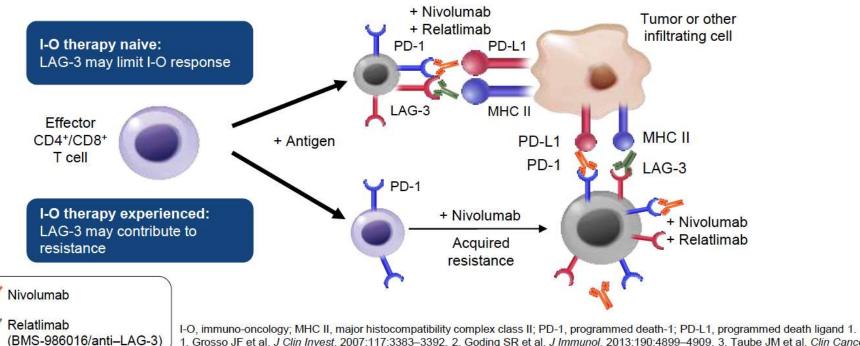
CheckMate-067– Melanoma with Combination Tx


Wolchok JD, et al. J Clin Oncol. 2016;34 [abstract 9505].


Mechanisms of Immunotherapy Resistance

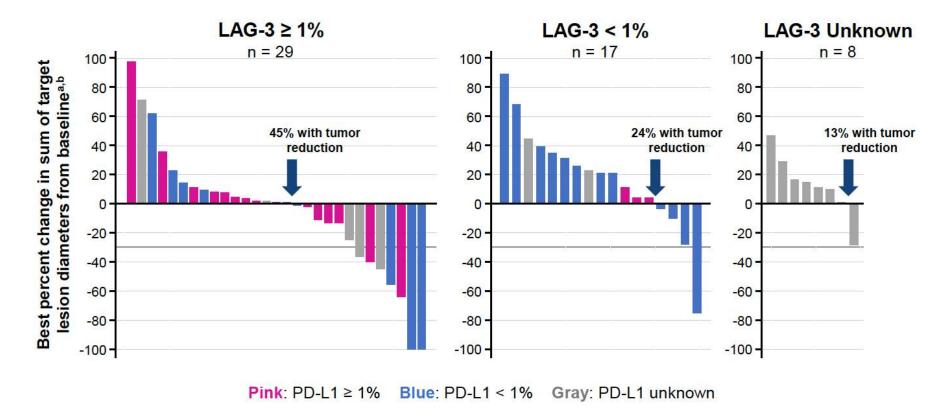
Therapeutic Strategies: Reverse anergy, ignorance

Efficacy of BMS-986016 (relatlimab), a Monoclonal Antibody That Targets Lymphocyte Activation Gene-3 (LAG-3), in Combination With Nivolumab in Patients With Melanoma Who Progressed During Prior Anti–PD-1/PD-L1 Therapy in All-Comer and Biomarker-Enriched Populations


Paolo Antonio Ascierto,¹ Petri Bono,² Shailender Bhatia,³ Ignacio Melero,⁴ Marta Nyakas,⁵ Inge Marie Svane,⁶ James Larkin,⁷ Carlos A. Gomez-Roca,⁸ Dirk Schadendorf,⁹ Reinhard Dummer,¹⁰ Aurélien Marabelle,¹¹ Christoph Hoeller,¹² Matthew Maurer,¹³ Christopher Harbison,¹³ Priyam Mitra,¹³ Satyendra Suryawanshi,¹³ Kent Thudium,¹³ Eva Muñoz-Couselo¹⁴

¹Istituto Nazionale Tumori Fondazione "G. Pascale," Napoli, Italy; ²Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; ³University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, WA; ⁴Clinica Universidad de Navarra, Pamplona, Spain; ⁵Oslo University Hospital, Oslo, Norway; ⁶Copenhagen University Hospital, Herlev, Denmark; ⁷Royal Marsden Hospital, NHS Foundation Trust, London, United Kingdom; ⁸Institut Universitaire du Cancer, Oncopole, Toulouse, France; ⁹Westdeutsches Tumorzentrum, University Hospital Essen & German Cancer Consortium, Essen, Germany; ¹⁰UniversitätsSpital Zürich, Skin Cancer Center University Hospital, Zürich, Switzerland; ¹¹Gustave Roussy, Paris, France; ¹²Medical University of Vienna, Vienna, Austria; ¹³Bristol-Myers Squibb, Princeton, NJ; ¹⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain

Potential Role of LAG-3 in T-Cell Exhaustion and Anti–PD-1 Resistance



 LAG-3 and PD-1 receptors are overexpressed and/or co-expressed on tumor-infiltrating lymphocytes in melanoma^{2,3}

1. Grosso JF et al. J Clin Invest. 2007;117:3383–3392. 2. Goding SR et al. J Immunol. 2013;190:4899–4909. 3. Taube JM et al. Clin Cancer Res. 2015;21:3969–3976.

Best Change in Target Lesion Size by LAG-3 and PD-L1 Expression

^aSix patients with clinical progression prior to their first scan and 1 with PD due to a new symptomatic brain metastasis prior to getting full scans were not included. ^bOne patient with best change from baseline > 30% had a best response of SD.

Significant antitumor activity for low-dose ipilimumab (IPI) with pembrolizumab (PEMBRO) immediately following progression on PD1 Ab in melanoma (MEL) in a phase II trial

<u>Daniel J. Olson¹</u>, Jason J. Luke², Andrew S. Poklepovic³, Madhuri Bajaj⁴, Emily Higgs¹, Timothy C. Carll¹, Brian Labadie¹, Thomas Krausz¹, Yuanyuan Zha¹, Theodore Karrison¹, Jose Lutzky⁵, Sigrun Hallmeyer⁶, Bruce Brockstein⁷, Vernon K. Sondak⁸, Zeynep Eroglu⁸, Thomas F. Gajewski¹, Nikhil I. Khushalani⁸

- 1. The University of Chicago Comprehensive Cancer Center, Chicago, IL
- 2. The University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA
- 3. VCU Massey Cancer Center, Richmond, VA
- 4. Illinois Cancer Care, Peoria, IL
- 5. Mount Sinai Medical Center, Miami Beach, FL
- 6. Oncology Specialists, SC, Park Ridge, IL
- 7. NorthShore University Health System, Evanston, IL
- 8. H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL

#ASCO20 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Daniel J. Olson (@Daniel Olson MD)

AT THE FOREFRONT

nicado

edicine

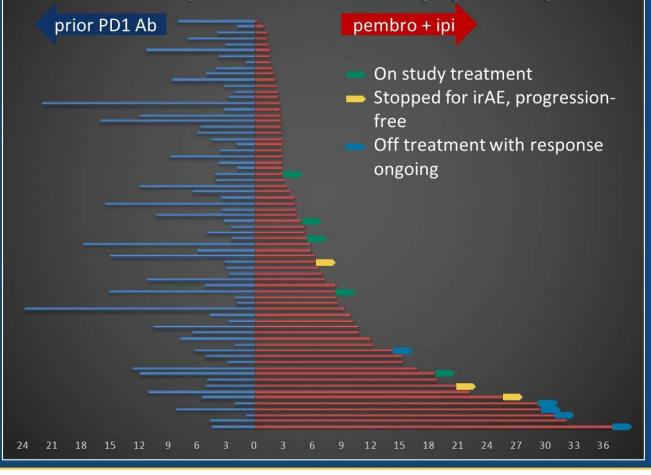
Pembro + low-dose ipi after PD1 Ab failure: Patient demographics

Characteristic	Study patients receiving ≥ 1 dose (n=70)
Age (years)	
Median	64
Range	27 - 87
Sex	
М	47 (67%)
F	23 (33%)
BRAF Status	
Mutant (V600)	20 (29%)
Wild Type	50 (71%)
AJCC Stage	
IIIc (unresectable)	12 (17%)
IV	58 (83%)
M1a	15 (21%)
M1b	9 (13%)
M1c	27 (39%)
M1d	7 (10%)
Melanoma Subtypes	
Cutaneous	62 (89%)
Acral	7 (10%)
Mucosal	1 (1%)

Characteristic	Study patients receiving ≥ 1 dose (n=70)	
Adjuvant PD1 Ab Progression	13 (19%)	
Baseline LDH		
< ULN	50 (71%)	
> ULN	15 (21%)	
≥ 2x ULN	5 (7%)	
History of Brain Metastases (treated)		
Yes	7 (10%)	
No	53 (90%)	
Liver Metastases		
Yes	17 (24%)	
No	53 (76%)	
Prior Lines Systemic Therapy		
(Mean = 1)		
PD1 Ab alone	60 (86%)	
PD1 Ab combination (non-CTLA4 Ab)	10 (14%)	
Prior BRAF directed therapy (pre-PD1 Ab)	5 (7%)	

#ASCO20 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Daniel J. Olson (@Daniel Olson MD)

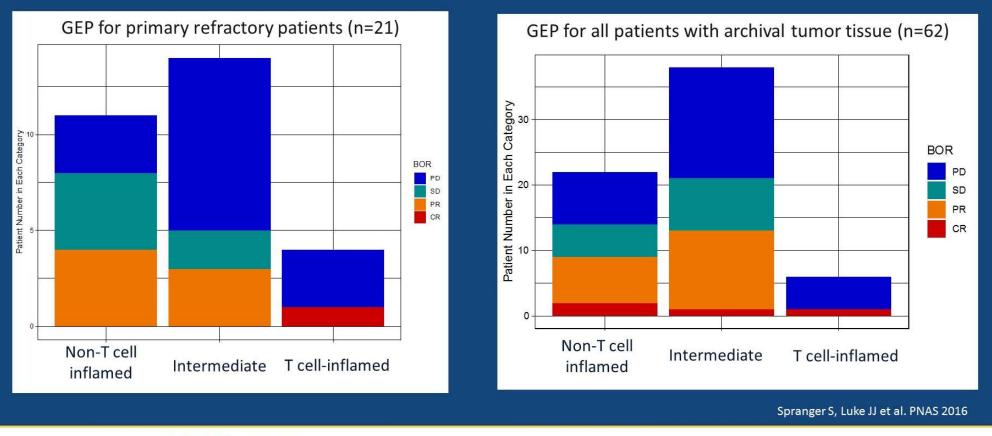


Pembro + low-dose ipi: study timeline

Median time on prior PD1 Ab = 4.8 months

Median PFS on Pembro + low-dose ipi = 5 months (95% CI: 2.8-8.3)

Time on prior PD1 Ab vs progression free time on pembro + low-dose ipi (months)



#ASCO20 Slides are the property of the author, ANNUAL MEETING permission required for reuse

PRESENTED BY: Daniel J. Olson (@Daniel Olson MD)

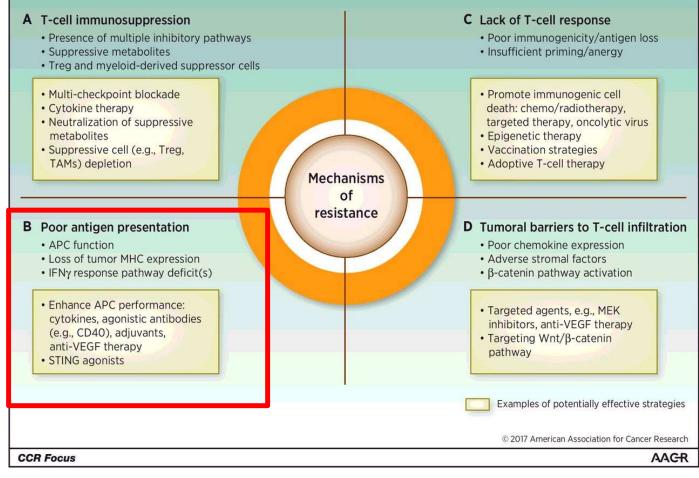
Pembro + low-dose ipi efficacy is observed in tumors with a non-T cell inflamed gene expression profile (GEP)

PRESENTED BY: Daniel J. Olson (@DanielOlsonMD)

2020ASC

ANNUAL MEETING

PRESENTED AT:


#ASCO20

Slides are the property of the author,

permission required for reuse

12

Therapeutic Strategies: Reverse anergy, ignorance

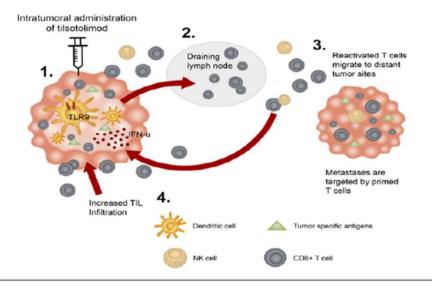
Daphne Day et al. Clin Cancer Res 2017;23:4980-4991

Final Results from ILLUMINATE-204, a Phase 1/2 Trial of Intratumoral Tilsotolimod in Combination with Ipilimumab in PD-1 Inhibitor Refractory Advanced Melanoma

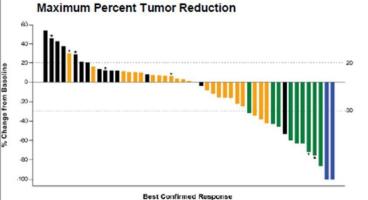
Cara L. Haymaker¹, Robert H.I. Andtbacka², Douglas B. Johnson³, Montaser F. Shaheen⁴, Shah Rahimian⁵, Srinivas Chunduru⁵, Nashat Gabrail⁶, Gary Doolittle⁷, Igor Puzanov⁸, Joseph Markowitz⁹, Chantale Bernatchez¹⁰, Adi Diab¹⁰

¹Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX. ²Surgical Oncology Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT. ³Division of Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. ⁴University of Arizona, Department of Medicine and Cancer Center, Tucson, Arizona. ⁵Idera Pharmaceuticals, Inc., Exton, PA. ⁶Department of Oncology, Gabrail Cancer Center, Canton, OH. ⁷Department of Oncology, University of Kansas Medical Center, Kansas, USA. ⁸Roswell Park Comprehensive Cancer Center, Buffalo, NY. ⁹Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL. ¹⁰Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX.

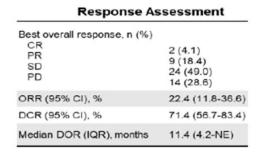
Adi Diab, MD

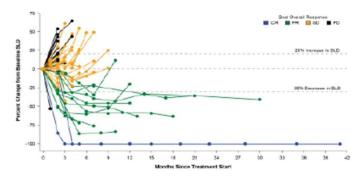


Highly unmet need in post-PD-1 advanced melanoma

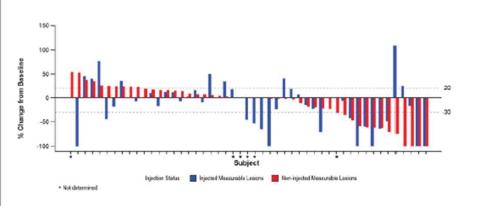

Patients with advanced melanoma that progressed on or after PD-1 inhibitor therapy have a poor prognosis

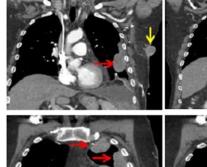
Resistance to checkpoint inhibitors may be overcome by combining them with other immune modulators


Tilsotolimod is an investigational TLR9 agonist that has been shown to activate innate and adaptive immune responses and rapidly upregulate type 1 IFN and dendritic cell activation following intratumoral injection

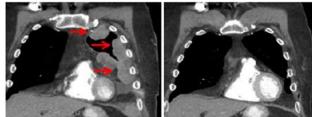

Clinical activity (8 mg intratumoral tilsotolimod with ipilimumab)

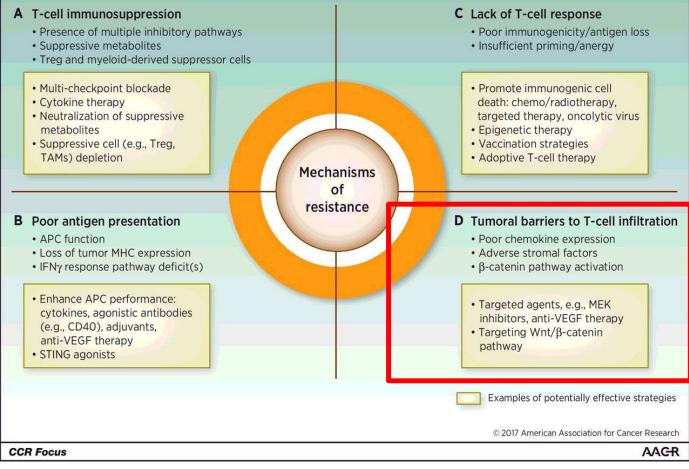
CR PR SO PO




Tumor Burden Change Over Time by Patient

Pre-therapy (03/2016)

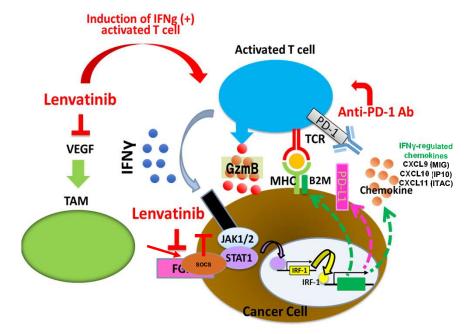

Post-therapy (08/2016)



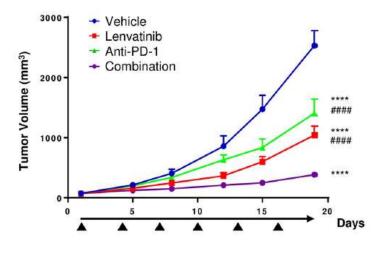
Therapeutic Strategies: Reverse anergy, ignorance

Daphne Day et al. Clin Cancer Res 2017;23:4980-4991

Lenvatinib Plus Pembrolizumab for Advanced Melanoma That Progressed on a PD-1 or PD-L1 Inhibitor: Initial Results of LEAP-004


Ana Arance,¹ Steven J. O'Day,² Luis de la Cruz Merino,³ Teresa M. Petrella,⁴ Rahima Jamal,⁵ Lars Ny,⁶ Ana Carneiro,⁷ Alfonso Berrocal,⁸ Ivan Márquez-Rodas,⁹ Anna Spreafico,¹⁰ Victoria Atkinson,¹¹ Fernanda Costa Svedman,¹² Alan D. Smith,¹³ Ke Chen,¹⁴ Scott J. Diede,¹⁴ Clemens Krepler,¹⁴ Georgina V. Long¹⁵

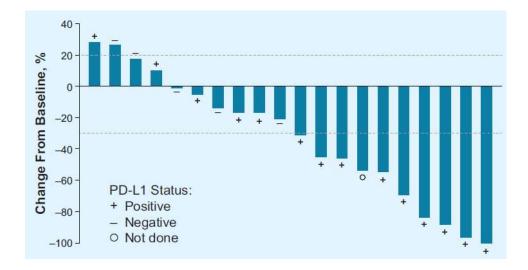
¹Hospital Clinic Barcelona, Barcelona, Spain; ²John Wayne Cancer Institute, Santa Monica, CA, USA; ³Hospital Universitario Virgen Macarena, Seville, Spain; ⁴Sunnybrook Health Sciences Centre, Toronto, ON, Canada; ⁵Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada; ⁶University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden; ⁷Skåne University Hospital and Lund University, Lund, Sweden; ⁸Hospital General Universitario de Valencia, Valencia, Spain; ⁹Hospital General Universitario Gregorio Marañón and CIBERONC, Madrid, Spain; ¹⁰Princess Margaret Cancer Centre, University Hospital, University of Toronto, ON, Canada; ¹¹Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia; ¹²Karolinska University Hospital, Stockholm, Sweden; ¹³Eisai Ltd., Hatfield, United Kingdom; ¹⁴Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁵Melanoma Institute Australia, University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, NSW, Australia


Presented at the European Society for Medical Oncology Virtual Congress 2020 (ESMO) September 19 – 21, 2020

Rationale for Combining Lenvatinib and Pembrolizumab

Lenvatinib helps shift the tumor microenvironment to an immune stimulatory state by dual VEGFR and FGFR inhibition¹⁻³

Combination of lenvatinib and anti–PD-1 has shown superior antitumor activity than either agent alone in a CT26 mouse model¹



^{****} P<0.0001, Dunnett's test vs vehicle on day 19; ## P<0.01, #### P<0.0001 vs combination.

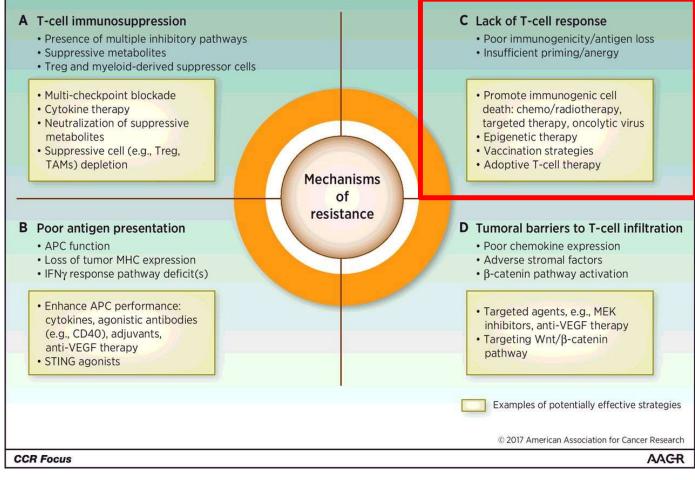
1. Kato Y et al. *PLoS One* 2019;14:e0212513; 2. Kimura T et al. *Cancer Sci* 2018;109:3993-4002; 3. Adachi Y et al. Poster 6637 presented at AACR 2020 Virtual Annual Meeting II. Figure in left panel provided by and used with permission of Eisai Inc., Woodcliff Lake, NJ, USA. Figure in right panel taken from Kato Y et al. *PLoS One* 2019;14:e0212513 and used in its native, unmodified form under the auspices of the Creative Commons Attribution-NonCommercial 4.0 license. See: http://creativecommons.org/licenses/by-nc/4.0.

Lenvatinib Plus Pembrolizumab Has Antitumor Arrance MK-7902 LEAP-004 2020

Phase 1b/2 Study of Patients with Metastatic Melanoma With ≤2 Prior Systemic Therapies

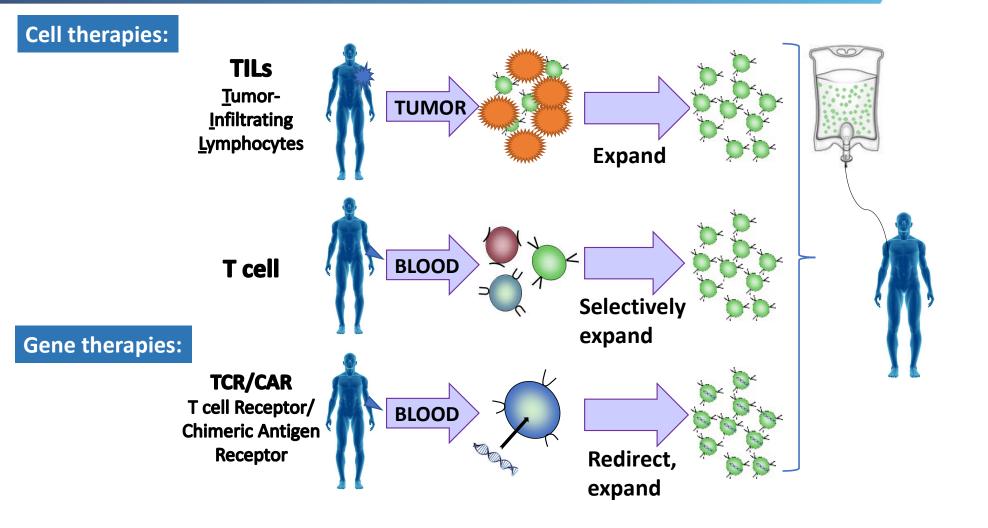
	N = 21
Median follow-up	16.0 months
ORR at 24 weeks ^a	47.6%
Median PFS	5.5 months
12-month PFS	34.7%

^aPrimary end point.

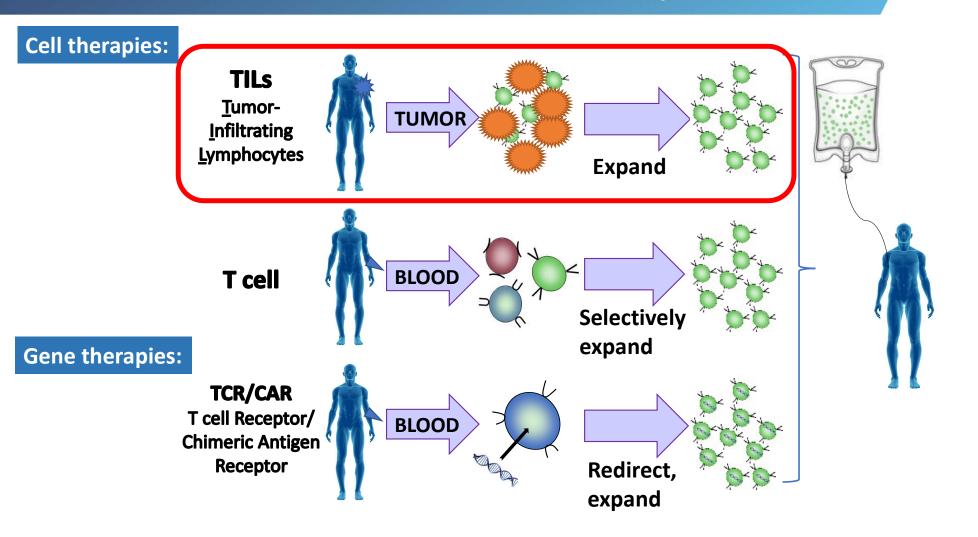

Taylor MH et al. Poster P391 presented at the Society for Immunotherapy of Cancer Annual Meeting; November 7–11, 2018; Washington, DC.

Phase II: Lavatinib + Pembrolizumab in Previously Treated melanoma BICR-Confirmed Response by RECIST v1.1

	Total Population N = 103
ORR, % (95% CI)	21.4% (13.9-30.5)
DCR, % (95% CI)	65.0% (55.0-74.2)
Best overall response, n (%)	
CR	2 (1.9%)
PR	20 (19.4%)
SD	45 (43.7%)
PD	31 (30.1%)
Not assessed ^a	5 (4.9%)

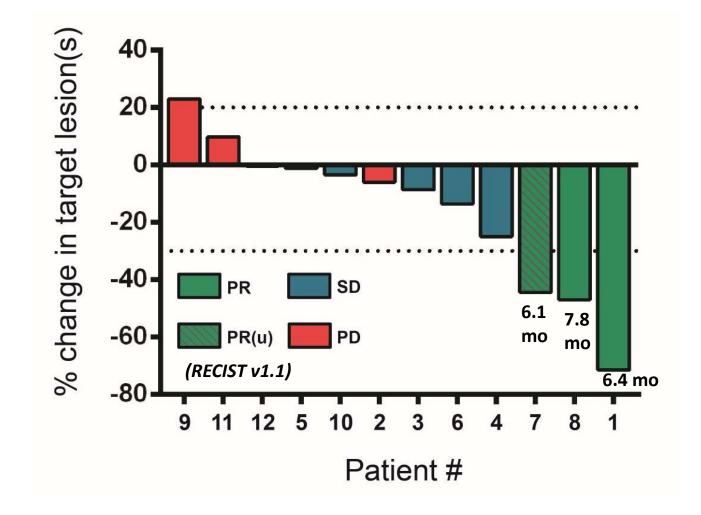

^aPatients who had no post-baseline imaging assessments. Data cutoff date: June 10, 2020.

Therapeutic Strategies: Reverse anergy, ignorance



Daphne Day et al. Clin Cancer Res 2017;23:4980-4991

Approaches for adoptive T cell therapy


Approaches for adoptive T cell therapy

Melanoma TILs study: Patient characteristics

Patient	Sex	Age	Histology	BRAF status	M Stage ^a	Disease Sites	Previous Treatment
1	М	43	Cutaneous	WT	M1b	LN, SC, lung	None
2	М	64	Cutaneous	WT	M1c	LN, lung, liver, adrenal	Ipi/Nivo, Carbo-tax
3	F	35	Cutaneous	WT	M1c	Lung, Sp, PC, bowel	Carbo-tax, Ipi
4	М	48	Cutaneous	V600E	M1c	Brain, LN, lung, Sp, kidney, gallbladder, psoas	Dabrafenib +/- tremetinib, Ipi, Pembro
5	F	40	Mucosal	WT	M1c	SC, lung, liver, kidney, retroperitoneal	Carbo-tax, Ipi, DTIC
6	F	49	Mucosal	WT	M1c	LN, lung, pleura, uterus, bone	lpi, Pembro, Carbo-tax
7	М	49	Cutaneous	WT	M1c	Brain, LN, SC, lung, pleura, chest wall, liver, Sp, small bowel	Ipi, Pembro
8	М	35	Cutaneous	WT	M1c	LN, SC, lung, Sp, kidney, bone, ureter, pancreas	DTIC, Ipi, Pembro, Carbo-tax
9	F	34	Cutaneous	WT	M1c	LN, SC, lung, PC, liver, kidney, breast	DTIC, Ipi, Pembro, IL-2 (injections)
10	М	61	Cutaneous	WT	M1c	Brain, LN, lung, kidney, pleura, peri-nephric	lpi/Nivo, Pembro
11	М	42	Uveal	WT	M1c	LN, SC, lung, PC, liver, kidney, pleura	DTIC/Selumetinib, Ipi/Nivo, Pembro
12	М	61	Cutaneous	WT	M1c	Brain, LN, SC, lung, PC, liver, pericardial, adrenal	Nivo, anti-PD-1/anti-GITR, Carbo-tax

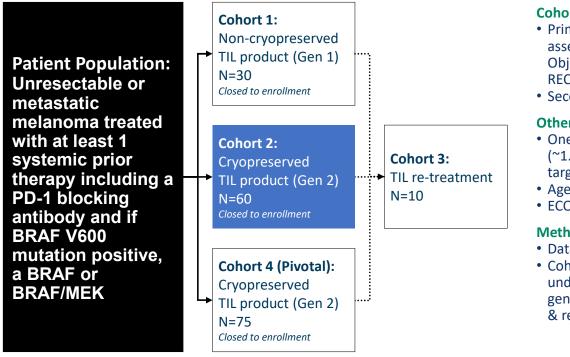
Clinical responses: Tumor Infiltrating Lymphocytes

Long-term follow up of lifileucel (LN-144) cryopreserved autologous tumor infiltrating lymphocyte therapy in patients with advanced melanoma progressed on multiple prior therapies

Amod Sarnaik, MD

H. Lee Moffitt Cancer Center, Tampa, FL, USA

2020 ASCO ANNUAL MEETING 30 Stides are the prop permission require


property of the author

PRESENTED AT:

PRESENTED BY:

Iovance C-144-01 Study Design

Phase 2, multicenter study to assess the efficacy and safety of autologous Tumor Infiltrating Lymphocytes (lifileucel) for treatment of patients with metastatic melanoma (NCT02360579)

Cohort 2 Endpoints:

- Primary: Efficacy defined as investigator assessed **Objective Response Rate (ORR) following** RECIST 1.1
- Secondary: Safety and efficacy

Other Key Eligibility Criteria:

- One tumor lesion resectable for TIL generation (~1.5cm in diameter) and \geq one tumor lesion as target for RECIST 1.1 assessment
- Age 18 years to 70 years at the time of consent
- ECOG Performance Status of 0-1

Methods:

- Data Extract: 23 April 2020 for Cohort 2
- Cohort 2 Safety & Efficacy sets: 66 patients who underwent resection for the purpose of TIL generation

& received lifileucel infusion

Amod Sarnaik, MD H. Lee Moffitt Cancer Center, Tampa, FL, USA

C-144-01 Cohort 2 Patient Characteristics

CHARACTERISTIC	Cohort 2, N=66, (%)	CHARACTERISTIC	Cohort 2, N=66, (%)
Gender, n (%)		BRAF Status, n (%)	
Female	27 (41)	Mutated V600	17 (26)
Male	39 (59)	Wild Type	45 (68)
Age, years		Unknown	3 (5)
Median	55	Other	1 (2)
Min, Max	20, 79	Baseline LDH (U/L)	
Prior therapies, n (%)		Median	244
Mean # prior therapies	3.3	1-2 times ULN	19 (29)
Anti-CTLA-4	53 (80)	> 2 times ULN	8 (12)
Anti-PD-1	66 (100)	Target Lesions Sum of Diameter (mm)	
BRAF/MEK	15 (23)	Mean (SD)	106 (71)
Progressive Disease for at least 1 prior therapy		Min, Max	11, 343
Anti CTLA-4	41 (77 ¹)	Number of Target & Non-Target Lesions (at Baseline)	
Anti-PD-1	65 (99)	>3	51 (77)
Baseline ECOG score, n (%)		Mean (SD)	6 (2.7)
0	37 (56)	Detionts with Deceling Liver and (or Drain Locions	29 (42)
1	29 (44)	Patients with Baseline Liver and/or Brain Lesions	28 (42)

Cohort 2 patients have:

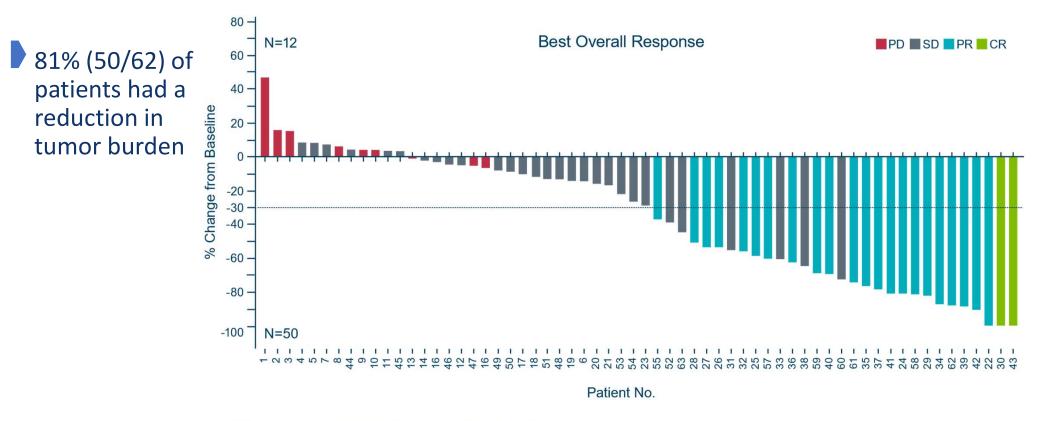
- 3.3 mean prior therapies, ranging from 1-9
- High tumor burden at baseline: 106 mm mean sum of diameters of the target lesions

 $^{\left(1\right) }$ The denominator is the 53 patients who received prior anti CTLA 4.

Amod Sarnaik, MD H. Lee Moffitt Cancer Center, Tampa, FL, USA

C-144-01 Cohort 2 Efficacy

RESPONSE	PATIENTS, N=66 n (%)
Objective Response Rate	24 (36.4)
Complete Response	2 (3.0)
Partial Response	22 (33.3)
Stable Disease	29 (43.9)
Progressive Disease	9 (13.6)
Non-Evaluable ¹	4 (6.1)
Disease Control Rate	53 (80.3)
Median Duration of Response	Not Reached
Min, Max (months)	2.2, 26.9+

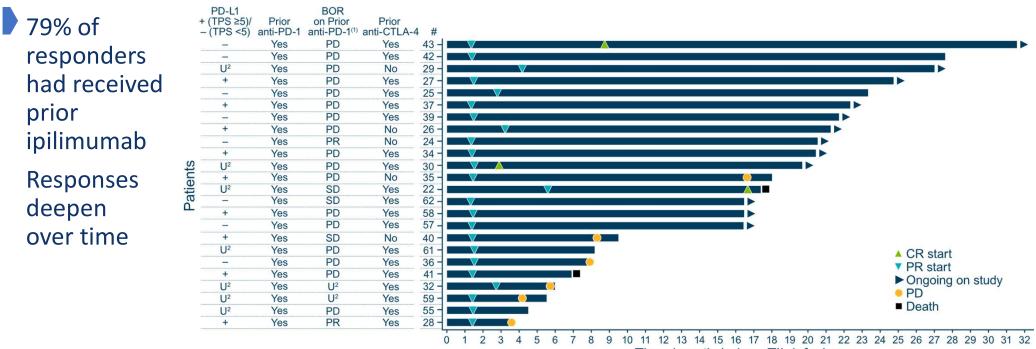

• After a median study followup of 18.7 months, median DOR was still not reached (range 2.2, 26.9+)

- Response was seen regardless of location of tumor resected
- Mean number of TIL cells infused: 27.3 x 10⁹

Amod Sarnaik, MD H. Lee Moffitt Cancer Center, Tampa, FL, USA

⁽¹⁾ NE due to not reaching first assessment

C-144-01 Cohort 2 Efficacy: Best Overall Response

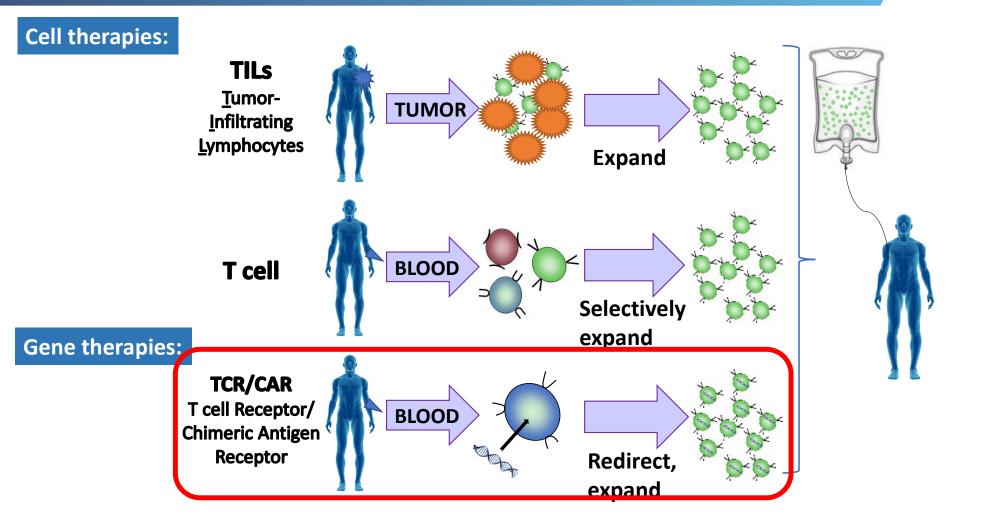


Three subjects had no post TIL disease assessment due to early death, and one due to start of new anti-cancer therapy

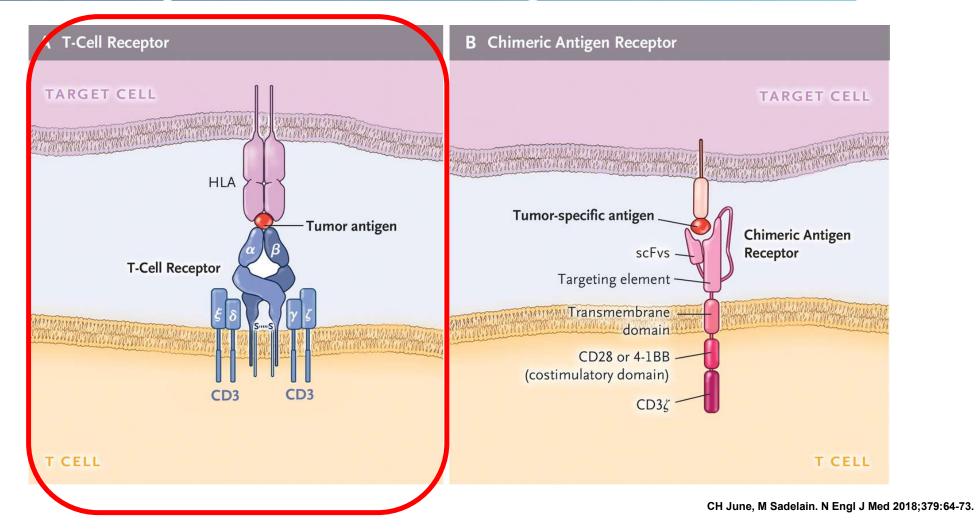
Amod Sarnaik, MD H. Lee Moffitt Cancer Center, Tampa, FL, USA 3

C-144-01 Cohort 2 Efficacy:

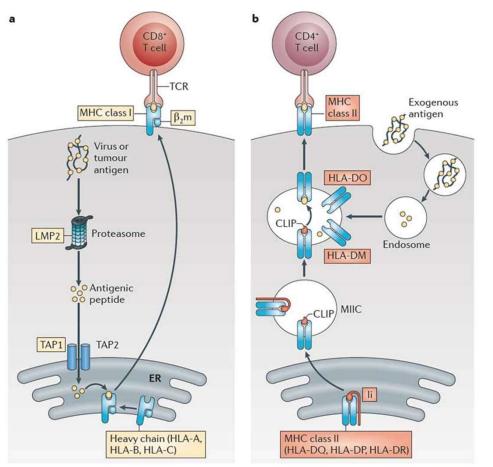
Time to Response for Evaluable Patients (PR or Better)



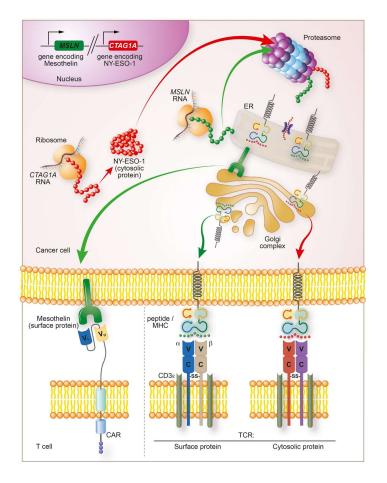
Time (months) since TIL infusion


⁽¹⁾ BOR is best overall response on prior anti-PD-1 immunotherapy
 ⁽²⁾ U: unknown
 ⁽³⁾ Patient 22 BOR is PR

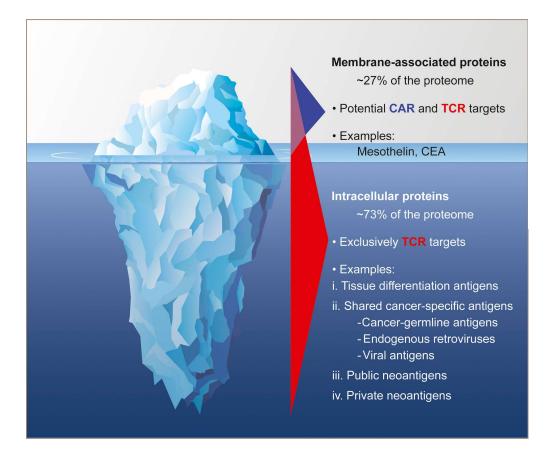
Amod Sarnaik, MD H. Lee Moffitt Cancer Center, Tampa, FL, USA


Approaches for adoptive T cell therapy

Gene-engineered T cells recognized cell surface



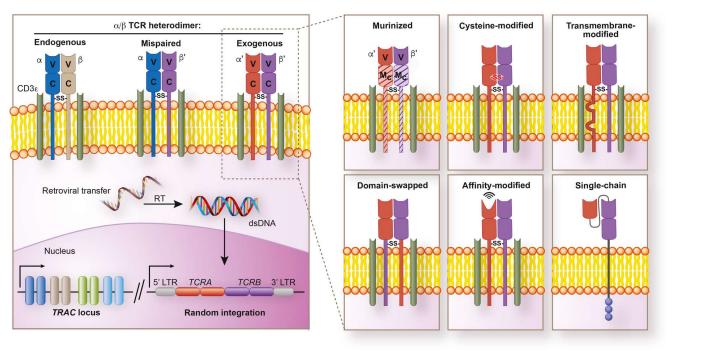
Antigen processing and presentation

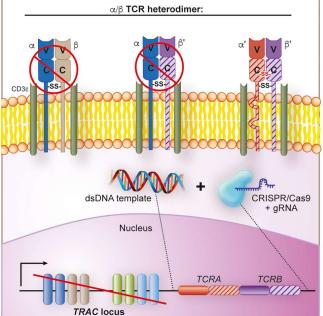

Nature Reviews | Immunology

Kobajashi and van den Elsen; Nature Reviews Immunology volume 12, pages 813–820 (2012)

Chandran and Klebanoff; Immunological Reviews, Volume: 290, Issue: 1, Pages: 127-147.

Tumor Antigen Targets

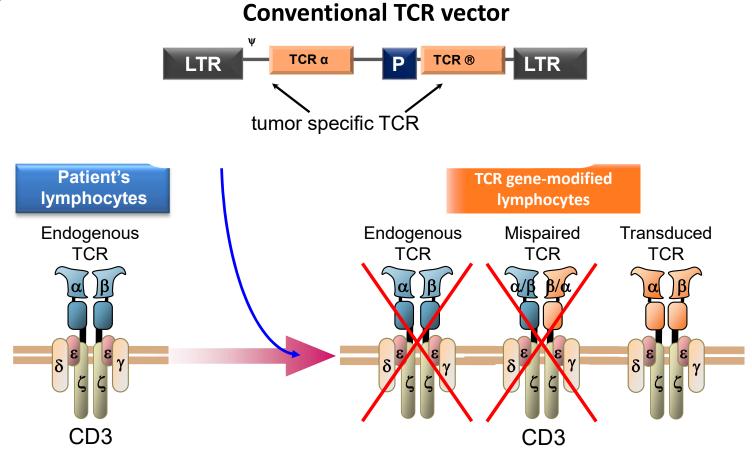



Chandran and Klebanoff; Immunological Reviews, Volume: 290, Issue: 1, Pages: 127-147.

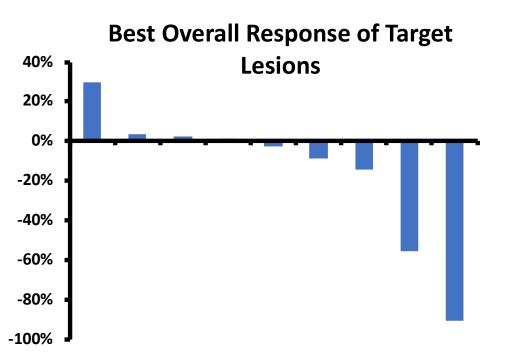
Normal cell Tumor cell Wild-type B-RAF Mutated B-RAF Mutated TAA (melanoma) (melanocyte) NY-ESO-1 NY-ESO-1 Cancer-testis TAA (synovial sarcoma) testicular germ cell) gp100 gp100 **Differention TAA** (melanoma) (melanocyte) HER-2/neu HER-2/neu Overexpressed TAA (epithelial cells) (breast cancer) Human papilloma Viral TAA virus (cervical cancer) ß Aberrantly glycosylated Glycosylated MUC-1 Posttranscriptionally MUC-1 modified TAA (ductal epithelial cells) (ovarian cancer)

Basic Science of Oncolog, in press.

Engineered TCR- problem of mispaired chains

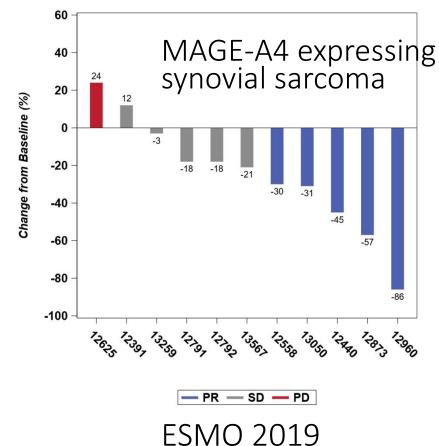


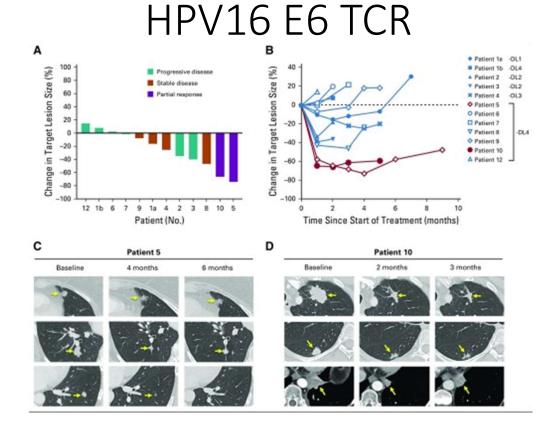
Chandran and Klebanoff; Immunological Reviews, Volume: 290, Issue: 1, Pages: 127-147.


Retroviral vector (Takara Bio)

Conventional TCR vector-transduced TCR mispairs with endogenous TCR

First nine patients treated on TBI-1301 study

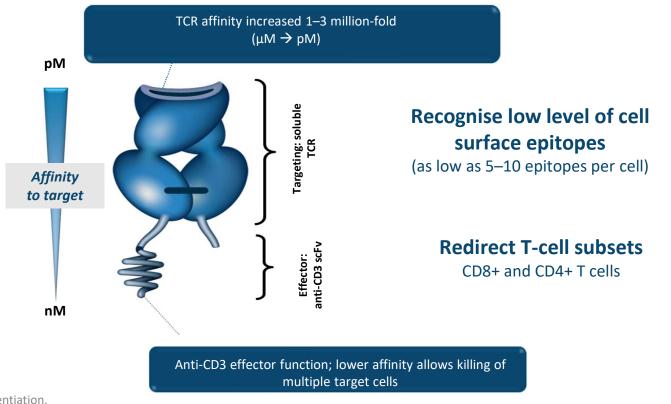

Pt	Age/Sex/Dx	Prior Tx	NYESO1 Expr	# Cells (x10^9)	CRS	Toci Tx	BOR	Time to Prog (mo)
060	40/F – Endometrial CA	carbo/tax, αPI3K, pembro, xrt	<5%	5.0	None	N	SD 3.6%	3.6
159	49/M – Synovial Sarc	doxo/ifos, xrt	>75%	2.14	Grade 2; fever, n/v, tumor pain	Y	SD -2.7%	5.5
208	38/M – Synovial Sarc	xrt, doxo/ifos	>75%	5.0	Grade 1; fever	Ν	PR -90.3%	6.2
003	30/F – Synovial Sarc	xrt, doxo/ifos, trem/durva	>75%	5.0	Grade 1; fever	Ν	PR -55.7%	10.5
109	60/F — Melanoma	encor/bini; pemb/C/T; niv/αLAG3	>75%	5.0	None	N	SD 2.2%	4.5
001	64/F – Melanoma	nivo; ipi; dab/tram, carbo/tax	<5%	5.0	None	N	PD 30%	1.7
298	28/F — Synovial Sarc	doxo/ifos, xrt; gem/tax; pazopanib	>75%	5.0	Grade 1; fever, tumor pain	N	SD -14.3%	7.3
222	50/M – Melanoma	encor/bini; ipi/nivo; pemb/αICOS; durv/IMCgp100	<5%	5.0	None	N	SD 1.3%	4.8
166	79/F — Ovarian Ca	carbo/tax; carbo/gem; doxil/αPDL1; wkly tax; phase 1; carbo	5-25%	5.0	Grade 2; fever, SVT	Y	SD -8.5%	2.9+



ASCO 2019: Butler et al.

Beyond NY-ESO-1 TCR Therapy

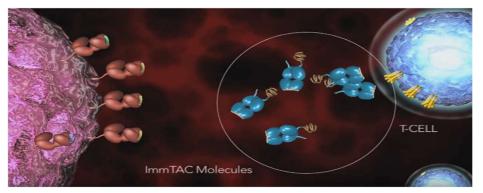
ADP-A2M4 Spear T-cells



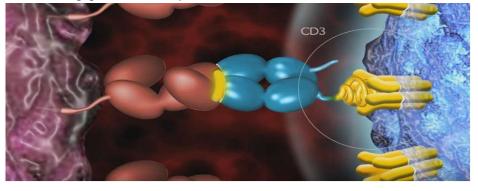
Doran et al, JCO October 2019.

Bispecifics T cell engagers: TCR-based, ImmTAC

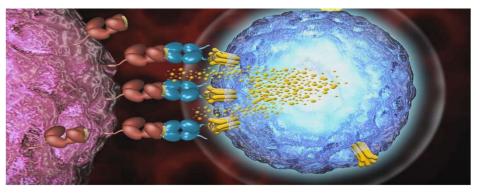
ImmTAC: immune-mobilising monoclonal TCRs against cancer^{1–3}


Boudousquie et al. 2017;
 Oates et al. 2015;
 Bossi et al. 2014.

Immunocore

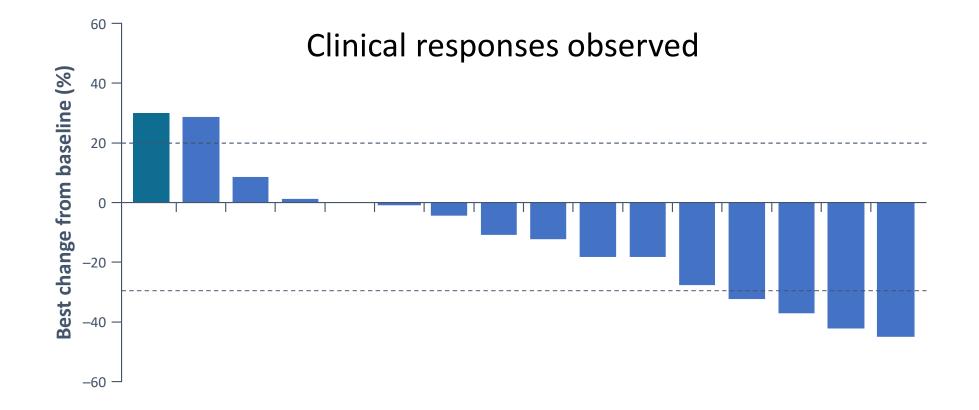

CD: cluster of differentiation.

Upcoming studies: NY-ESO-1 bispecific


Step 1: ImmTAC molecules are infused^{1–3}

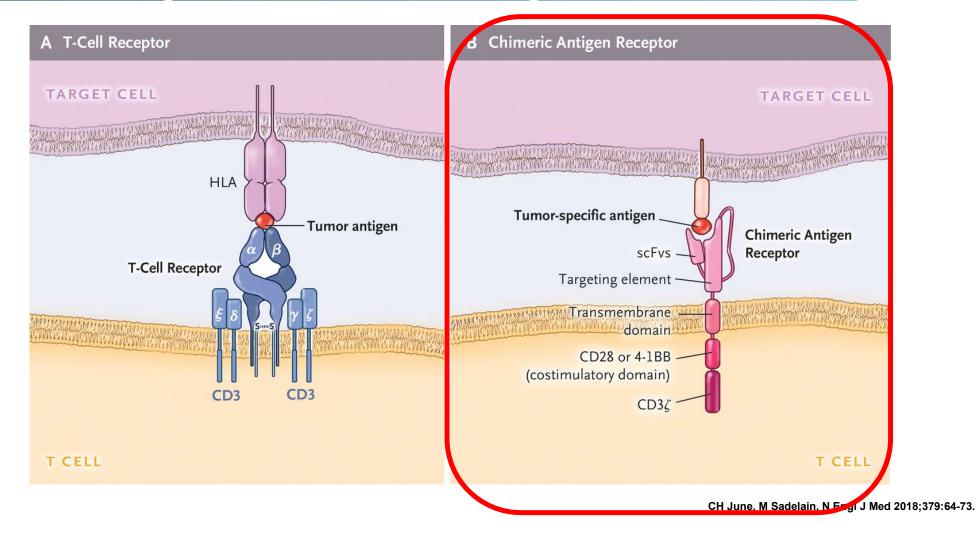
Step 2: The TCR end recognises the **target HLA complex** on the cancer cell. The anti-CD3 engages the CD3 receptor on killer T cells^{1–3}

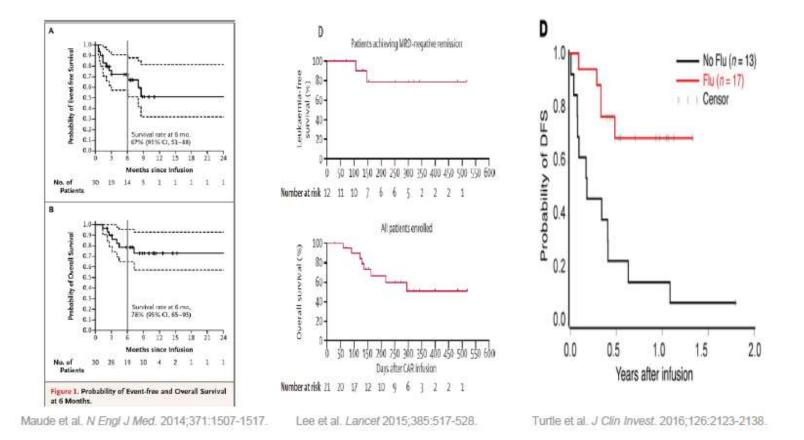
Step 3: The T cell is activated and releases lytic granules, killing the cancer cell^{1–3}



Immunocore

1. Boudousquie et al. 2017; 2. Oates et al. 2015; 3. Bossi et al. 2014.


Phase I study of IMCgp100 in Uveal Melanoma


Immunocore

Sato T, et al. 2018.

Gene-engineered T cells recognized cell surface

Survival of B-ALL Patients after CD19-Targeted CAR T Cells

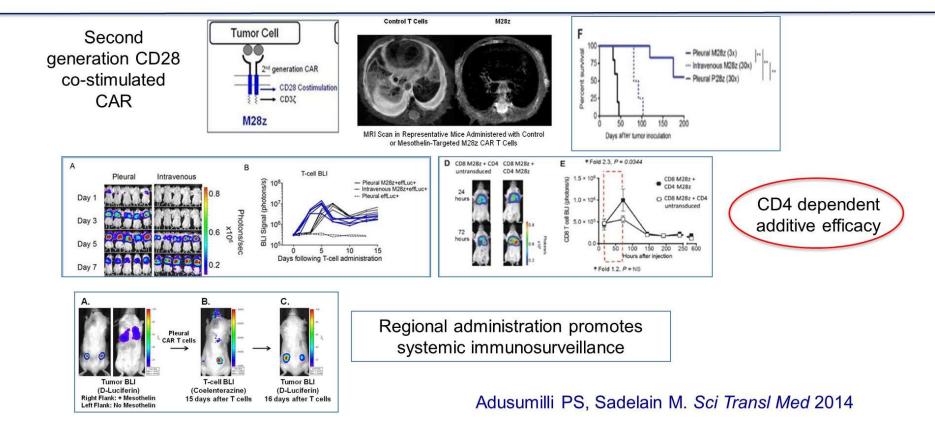
Solid tumor targets for CAR

	Brain	EGFRvIII, HER2, IL13RA	
	Head and neck	ERBB family	
M	Lung	CEA, HER2, MSLN	
	Pleura	FAP, MSLN	
1	Breast	CEA, cMET, HER2, MSLN	
	Gastric	CEA, HER2	
	Liver	GPC3	
$\langle \langle \rangle \rangle$	Colon	CEA	
8 1 19	Pancreas	CEA, MSLN	41.12
	Renal	VEGFR2	
	Ovarian	FR, HER2, MSLN, MUC16	
	Prostate	PSMA	
-(Skin	GD2, VEGFR2	
	Bone	GD2, HER2	
	Soft tissue	GD2, HER2	
28	Neural	GD2, L1-CAM	

Aurore Morello et al. Cancer Discov 2016;6:133-146

Mesothelin

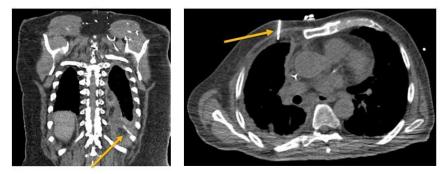
Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-PD-1 agent


2019 ASCO Annual Meeting, Chicago

Memorial Sloan Kettering Cancer Center₁₅₆

Prasad S. Adusumilli, Marjorie G Zauderer, Valerie W Rusch, Roisin E O'Cearbhaill, Amy Zhu, Daniel Ngai, Erin McGee, Navin Chintala, John Messinger, Waseem Cheema, Elizabeth F Halton, Claudia R Diamonte, John Pineda, Alain Vincent, Shanu Modi, Steve Solomon, David R Jones, Renier J Brentjens, Isabelle C Riviere, Michel W Sadelain

Intrapleural administration potentiates CAR T cell efficacy

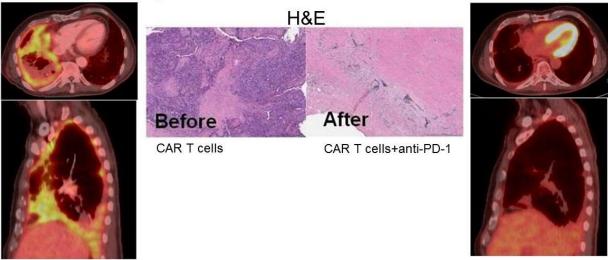

Single dose of CAR T cells administered intrapleurally

Cohort	PT #	Age/ Sex	Diagnosis	Histology	Stage	CAR T Line of Therapy	Route of Administration
1 3e5/kg (no cyclo)	1	59F	Lung Cancer	Adeno Ca	IV	4	Pleural catheter
	2	69M	Mesothelioma	Epithelioid	IV	6	Pleural catheter
	3	66F	Mesothelioma	Epithelioid	IV	5	Pleural catheter
0	4	56M	Mesothelioma	Epithelioid	IV	6	Pleural catheter
2	5	70F	Breast Cancer	Intraductal Ca	IV	9	IR
3e5/kg	6	72M	Mesothelioma	Biphasic	IIIA	2	IR
3	7	70M	Mesothelioma	Epithelioid	IIIA	2	Pleural catheter
	8	73M	Mesothelioma	Epithelioid	IIIB	6	Pleural catheter
1e6/kg	9	66M	Mesothelioma	Epithelioid	IV	4	IR
4	10	70M	Mesothelioma	Epithelioid	IIIB	2	Pleural catheter
	11	74M	Mesothelioma	Epithelioid	IIIB	2	Pleural catheter
3e6/kg	12*	66M	Mesothelioma	Epithelioid	IIIB	2/5	Pleural catheter
5	13	76M	Mesothelioma	Epithelioid	IIIA	2	IR
-	14	69M	Mesothelioma	Epithelioid	IIIA	2	IR
6e6/kg	15	71M	Mesothelioma	Epithelioid	IIIB	2	Pleural catheter
	16	77F	Mesothelioma	Epithelioid	IV	7	IR
	17	71M	Mesothelioma	Biphasic	IIIA	2	IR
6	18	53M	Mesothelioma	Epithelioid	IIIB	3	IR
1e7/kg	19	64M	Mesothelioma	Epithelioid	IIIB	3	IR
	20	70M	Mesothelioma	Epithelioid	IIIA	3	Pleural catheter
	21	61F	Mesothelioma	Epithelioid	IIIB	2	IR
7	22	73M	Mesothelioma	Epithelioid	IIIB	2	IR
a mana	23	71F	Mesothelioma	Epithelioid	IV	2	IR
3e7/kg	24	70M	Mesothelioma	Epithelioid	IV	5	IR
8	25	55M	Mesothelioma	Epithelioid	IV	14	IR
	26	61M	Mesothelioma	Epithelioid	IV	3	IR
6e7/kg	27	77M	Mesothelioma	Epithelioid	1	2	IR

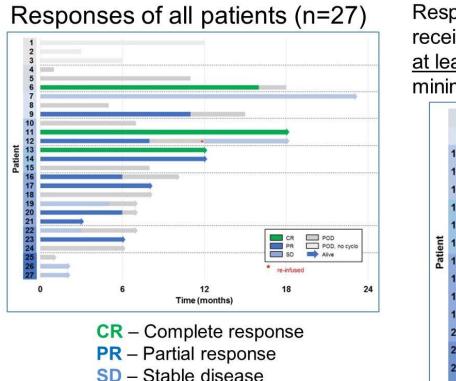
37% had ≥3 lines of therapy

Cyclophosphamide preconditioning in cohorts 2-8

IR - intervention radiology

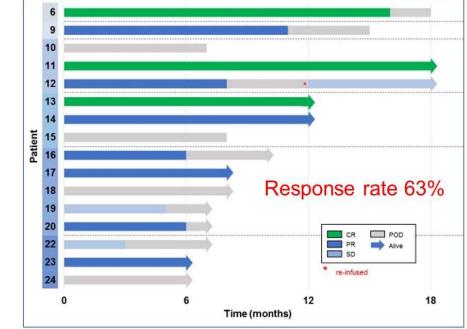

* Patient #12 re-infused at week 51

Mesothelin-targeted CAR T-cell therapy


MSLN CAR T-cells + anti PD-1 agent Complete response in patient #6 (16 months)

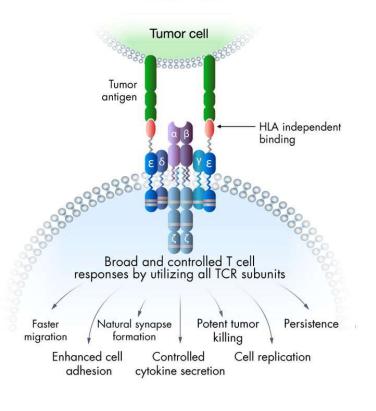
73 yr old h/o served in a battle ship diagnosed with **BIPHASIC** mesothelioma

- April 2017 <u>Unresectable</u> disease following chemotherapy
- May 2017 3e5 CAR T cells/kg following Cyclophosphamide administered
- July 2017 <u>Pembrolizumab</u> started (PD-L1 <1%, low mutational burden)
- Nov 2017 Complete metabolic response, Serum SMRP normal
- Feb 2018 <u>CAR T cells detected at 32 weeks</u> in blood and tissue
- No additional therapies for 16 months



Clinical responses with and without addition of anti-PD-1 antibody

POD – Progression of disease


Responses of mesothelioma patients (n=16) that received <u>Cyclophosphamide</u> and <u>CAR T-cells</u> and <u>at least 3 doses of anti-PD1</u> antibody with minimum 3 months follow-up

Upcoming study: TRuC-T targeting mesothelin

TRuC-T cell (TCR2 Therapeutics)

- Mesothelin expressing tumors
 - NSCLC
 - Ovarian Cancer
 - Mesothelioma
 - Cholangiocarcioma

TRuC-T Cell

TCR² Therapeutics

Summary:

- -Immunotherapy resistance
 - Primary and secondary resistance a major problem
- -New therapeutic approaches
 - Combination approaches
 - Targeting multiple suppressive factors
 - Engineering anti-tumor responses
- -Next steps
 - Clinical studies needed to advance cancer care

Tumor Immunotherapy Program – Thanks to a great team

Cell Manufacturing: L.Nguyen, A.Elford, M.Fyrsta, M.Le, D.Lemiashkova, C. Lo, D.Millar, K.Murakami, M.Nelles, J.Nie, M.Ouellette, K.Saso, E.Scheid, J.Yam.

Medical Oncology: S.Saibil, A.Sacher, A.Hansen, D.Hogg, A.Razak, L.Bonilla, H.Majeed, A.Spreafico, P.Arteaga, R.Singh, L.Mantle, L.Siu
Pathology: D.Ghazarian, A.Al-Habeeb, Z.Saeed Kamil, B.Clarke, M.Rouzbahman, M.Cabanero, M.Tsao.

Surgical Oncology: A.Easson, W.Leong, M.Bernardini, A.Covelli, M.Reedijk, T.Waddell, M.Cypel, M.dePerrot, G.Bouchard-Fortier, P.Dhar, D.Goldstein, P.Gullane, R.Hamilton, S.Keshavjee, S.Laframboise, T.May, D.McCready, C. O'Brien, A.Pierre, K.Yasufuku.

Clinical Trials Nursing: S.Boross-Harmer, J.Geisberger, J.Cipollone

Data/Regulatory Coordination: Tumor Immunotherapy Program: K.Ross, A.Trang, S.Elston, B.VanAs, T. Hansen, C.Capobianco Statistics: M.Maganti, W Xu, Y.Zhang, T.Pittman TIP Scientists: P.Ohashi, N.Hirano, T.McGaha, D.Brooks Immune Monitoring: V. Sotov, B.Wang, T.Pfister, V.Motta, D.Gray. Clinical Trials Pharmacy: S. DeLuca, B.Leung Inpatient/Autotransplant Unit Apheresis Unit Orsino Cell Processing Lab BMT-IEC Program Clinical Cancer Research Unit Correlatives Studies Program

The Princess Margaret Cancer Foundation 🔮 UHN