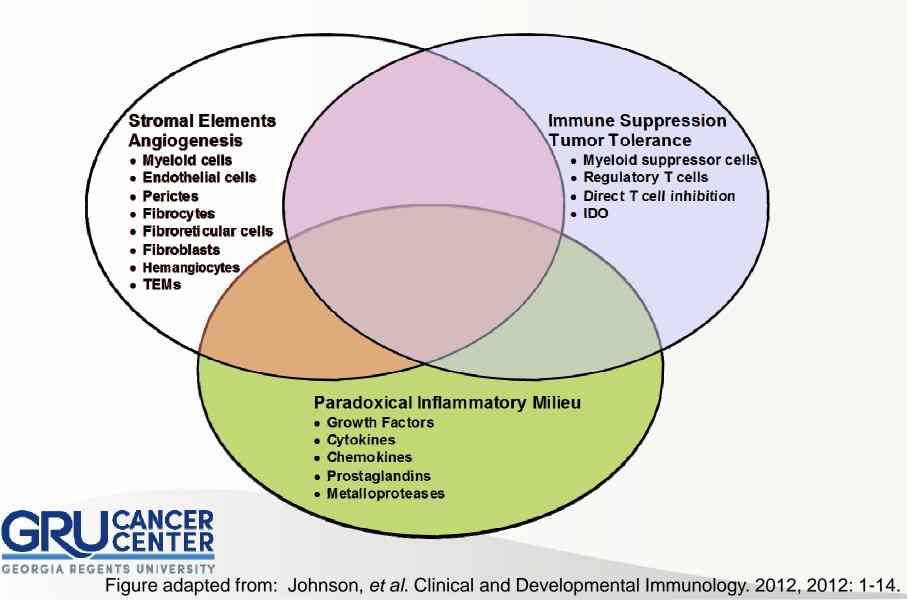
Immunotherapy for the Treatment of Brain Malignancies

Theodore S. Johnson, M.D., Ph.D.

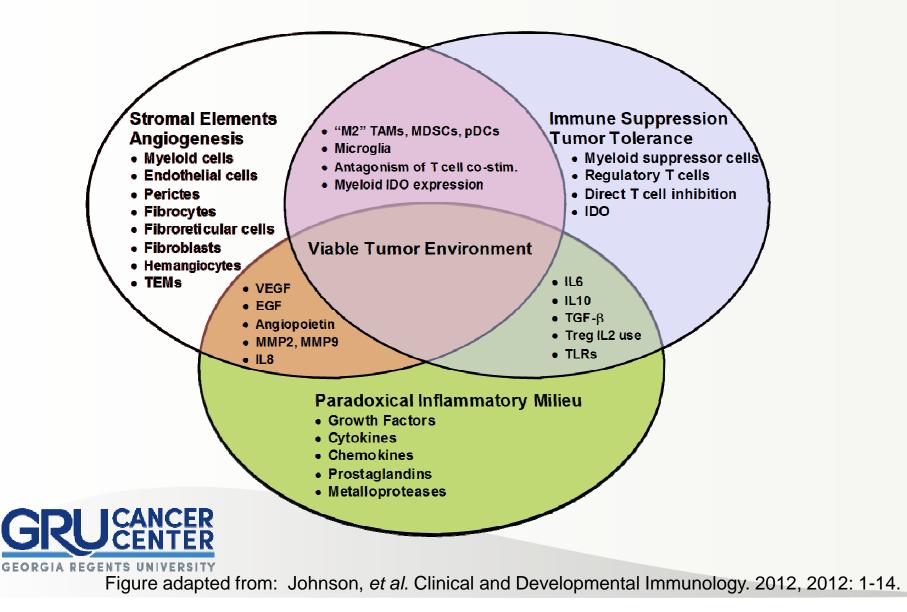
Georgia Regents University Cancer Center Cancer immunology, Inflammation and Tolerance (CIT) Program Pediatric Immunotherapy Program

Disclosures

- Theodore S. Johnson, M.D., Ph.D.
 - No relevant financial relationships exist with respect to this presentation
 - Off-label use of chemotherapy drugs will be discussed for pediatric patients



Objectives


- Identify 3 immune checkpoint pathways that are being studied in brain cancer
- Discuss current clinical trials that use drugs to block immune checkpoints in patients with brain cancer
- Understand the concept of using combinatorial immune checkpoint blockade to treat brain cancer
- Discuss the concept of the Pediatric Piggyback Trial design

What makes a viable tumor environment?

What makes a viable tumor environment?

Specialized immunology of brain tumors

General peripheral tolerance

T cell negative selection in thymus Natural (thymic) Tregs Acquired (adaptive) Tregs Local immunosuppression (IDO, TGF-β, IL10, CTLA-4, PD1)

CNS-specific privilege

Reduced lymphatic transport to draining lymph nodes Lack of resident immunogenic APCs (dendritic cells) Specialized endothelium excludes naïve T cells Local immunosuppression by astrocytes and microglia

Tumor-induced immunosuppression (CNS and non-CNS)

Local activation of natural Tregs Tumor-specific (adaptive) Tregs Local intratumoral immunosuppression IDO Arginase TGF-β IL10

CTLA-4 PD1/PD-L1

PD1/PD-L

Myeloid-derived suppressor cells

Tolerogenic APCs

Tolerogenic draining lymph nodes

Quiescent vascular endothelium

GRUCENTER GEORGIA REGENTS UNIVERSITY

Figure adapted from: Johnson, et al. Clinical and Developmental Immunology. 2012, 2012: 1-14.

Targets for Immunotherapy

Immune checkpoint blockade

IDO	inhibition	(small molecule)
CTLA-4	blockade	(antibody)
PD1/PDL1	blockade	(antibody)

Vaccine

Tumor lysates Dendritic cell-based Antigen/peptide-based Viral delivery of DNA Heat shock protein-peptide complex GMCSF-assisted

Adoptive lymphocyte transfer

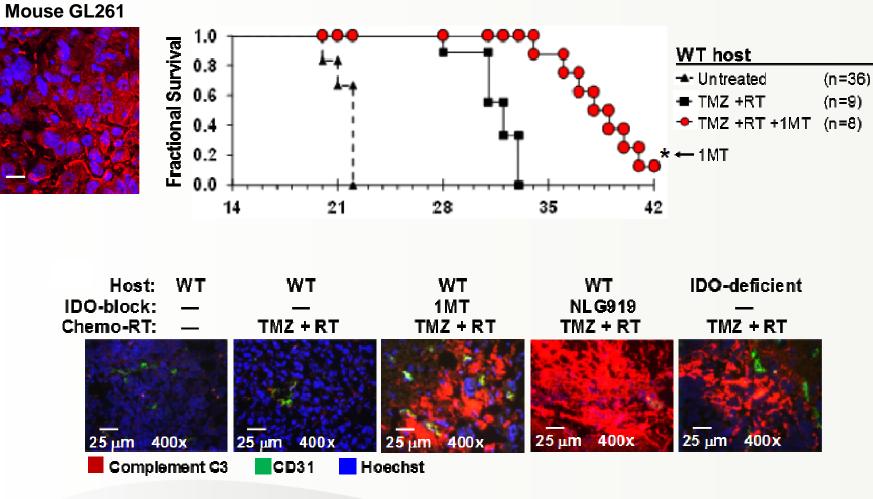
Autologous lymphocyte expansion/activation ex vivo Chimeric antigen receptor-modified (CAR) T cells

Antibody-based therapy

Biological pathway modifier Antigen-directed toxin delivery Antigen-directed radiopharmaceutical delivery Bispecific T cell engager (BiTE)

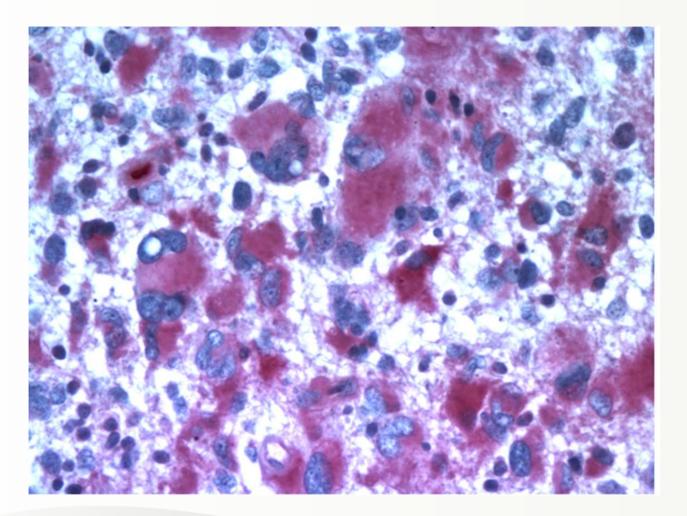
Oncolytic virus therapy

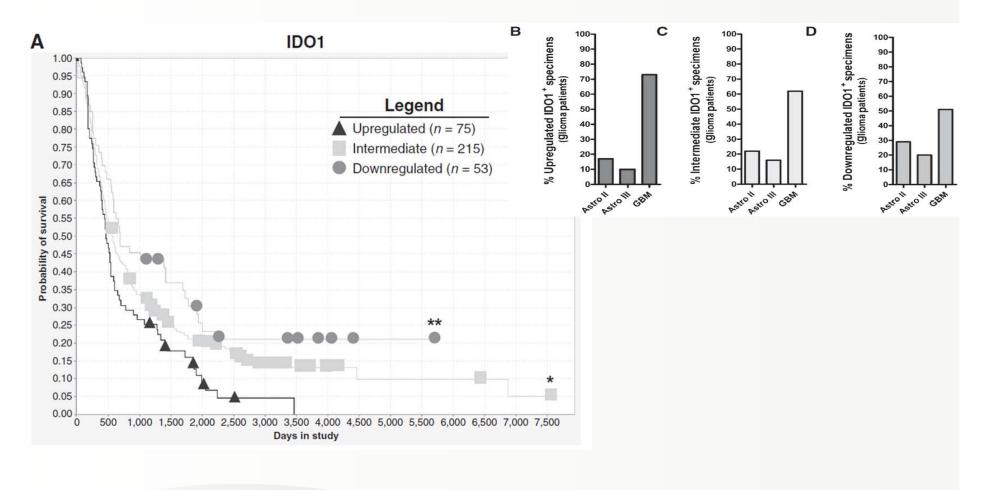
Adenovirus Herpes simplex virus Poliovirus


Table adapted from: P Fecci, et al. Clinical Cancer Research. 2014, 20: 5620.

Indoleamine 2,3-dioxygenase (IDO)

- IDO is the third of the known immune checkpoints
 - Along with the T cell checkpoints CTLA-4 and PD-1
- IDO is a natural endogenous molecular mechanism of immune suppression
 - IDO can impose *de novo* peripheral tolerance
- IDO is <u>counter-regulatory</u>
 - Induced by inflammation, but suppresses immune responses
- IDO regulates both adaptive and innate responses
 - suppresses effector T cells, activates Tregs
 - control of local inflammation, myeloid cell phenotype, etc.


Animal model of glioblastoma: IDO blockade as a therapeutic strategy


Figures adapted from: Li, et al. Journal for Immunotherapy of Cancer. 2014, 2: 21.

IDO expression in glioblastoma patients

IDO levels in first biopsy correlate with poor outcome in glioma patients

Figures adapted from: Wainwright, et al. Clinical Cancer Research. 2012, 18: 6110.

1. A phase lb/ll study of the combination of indoximod and temozolomide for adult patients with temozolomide-refractory primary malignant brain tumors (NCT02052648)

Phase I: Indoximod (dose-escalation, PO BID on days 1-28), in combination with temozolomide (qDay on days 1-5), for patients 18-70 with progressive glioblastoma;

28 day cycles until disease progression or unacceptable toxicity

Phase Ib results: indoximod + temozolomide for refractory primary malignant brain tumors (NCT02052648)

Characteristic	Indoximod + TMZ (N = 12)	
Gender, n (%)		
Female	5 (41.7)	
Male	7 (58.3)	
Race, n (%)		
White	9 (75.0)	
Black/African American	3 (25.0)	
Median age (range), years	48.5 (27-62)	
Diagnosis		
ĞВМ	10 (83.3)	
Oligodendroglioma	1 (8.3)	
Anaplastic astrocytoma	1 (8.3)	

TMZ, temozolomide; GBM, glioblastoma multiforme.

Table adapted from: Colman, et al. ASCO abstract. 2015.

Phase Ib results: indoximod + temozolomide for refractory primary malignant brain tumors (NCT02052648)

Table 3. Summary of AEs for Indoximod + TMZ (N = 12)

	Number of patients, n (%)		Number of patients, n (%)
Grade ≥3 AEs Fatigue Hyperglycemia Seizure Arm pain	2 (17) 1 (8) 1 (8) 1 (8)	Vomiting Insomnia Extremity pain	1 (8) 1 (8) 1 (8)
Treatment-related AEs* Nausea Fatigue Edema	4 (33) 2 (17) 1 (8)	Pruritus Vomiting	1 (8) 1 (8)

AE, adverse event; TMZ, temozolomide.

*All treatment-related AEs were grade 1 or 2 events except for fatigue, in which 1 patient had a grade 3 event.

Table adapted from: Colman, et al. ASCO abstract. 2015.

Phase Ib results:

- The MTD for indoximod in combination with temozolomide was 1,200 mg PO BID
- One (8%) patient currently remains on therapy
- One (8%) patient showed an ongoing partial response after having exhibited stable disease for 10 months
- Four (33%) additional patients showed stable disease ranging from 4 to 11 months
- Among the 5 patients with responses better than progressive disease, 4 (80%) had a diagnosis of GBM

Phase Ib results:

- One (8%) patient showed a partial response after having exhibited stable disease for 10 months
 - 42-year-old African American woman with a left fronto-parietal GBM
 - Unable to have definitive surgical resection due to location of tumor
 - Treated initially with standard chemoradiotherapy (60 Gy over 6 weeks with temozolomide [75 mg/m2/day]) followed by maintenance temozolomide
 - Progressive disease documented after 5 cycles of maintenance temozolomide
 - Subsequently, treated with single-agent bevacizumab
 - GBM progressed again 6 months later and bevacizumab was stopped

Phase Ib results:

- One (8%) patient showed a partial response after having exhibited stable disease for 10 months
 - 42-year-old African American woman with a left fronto-parietal GBM
 - Unable to have definitive surgical resection due to location of tumor
 - Treated initially with standard chemoradiotherapy (60 Gy over 6 weeks with temozolomide [75 mg/m2/day]) followed by maintenance temozolomide
 - Progressive disease documented after 5 cycles of maintenance temozolomide
 - Subsequently, treated with single-agent bevacizumab
 - GBM progressed again 6 months later and bevacizumab was stopped
 - Treated with indoximod + temozolomide
 - Stable disease with slow but modest reduction in tumor size over 10 months
 - Partial Response was achieved by RANO criteria after 12 months of therapy

Phase Ib results: indoximod + temozolomide for refractory primary malignant brain tumors (NCT02052648)

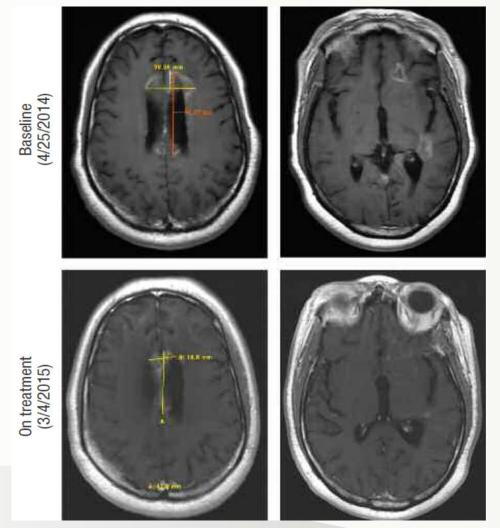


Figure adapted from: Colman, et al. ASCO abstract. 2015.

Phase II:

- 28-day cycles until disease progression or toxicity
- Currently enrolling relapsed/refractory glioblastoma patients 16-70 years of age in 3 cohorts:
 - Indoximod (days 1-28) + temozolomide (days 1-5)
 - Indoximod + temozolomide and bevacizumab (q2 weeks)
 - patients who progressed while on bevacizumab
 - Indoximod + temozolomide and stereotactic radiosurgery
 - patients with GBM who may benefit from tumor debulking

Pediatric Piggyback Trial Design

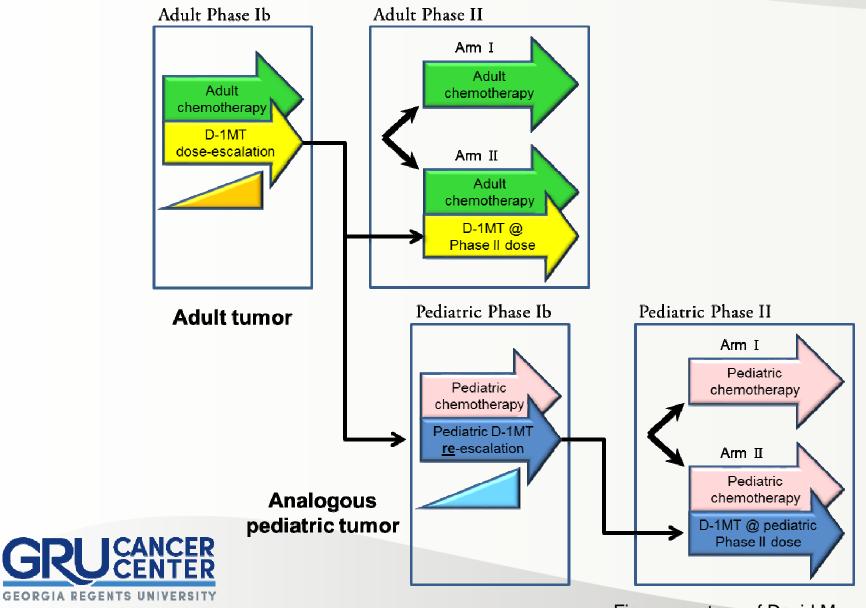
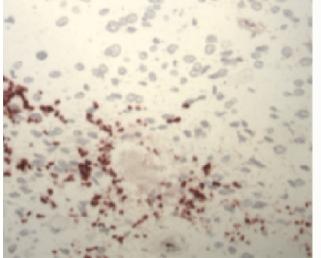
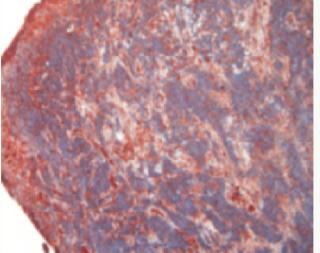


Figure courtesy of David Munn, MD

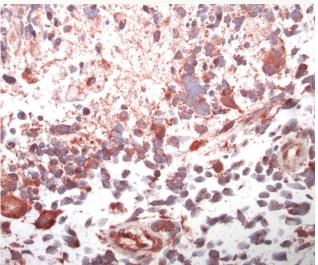
Advantages of the Pediatric Piggyback Trial Design


- The linked adult toxicity data provides a measure of protection for the pediatric cohort
- The incremental cost to drug companies is not large
- Foundations or institutions can fund the pediatric component at modest cost

... thus leveraging the larger adult infrastructure



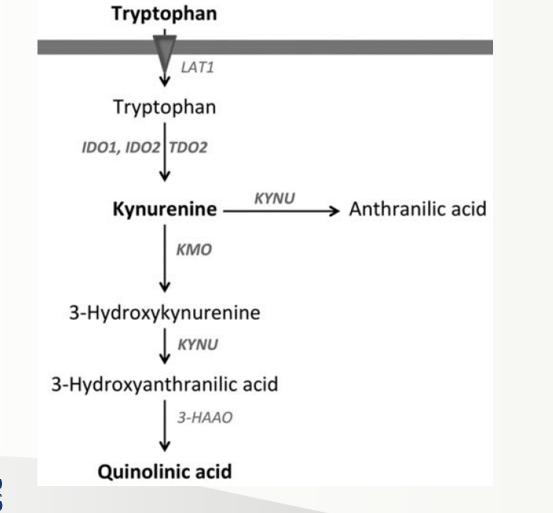
IDO expression in <u>pediatric</u> brain tumors


Ependymoma

Medulloblastoma

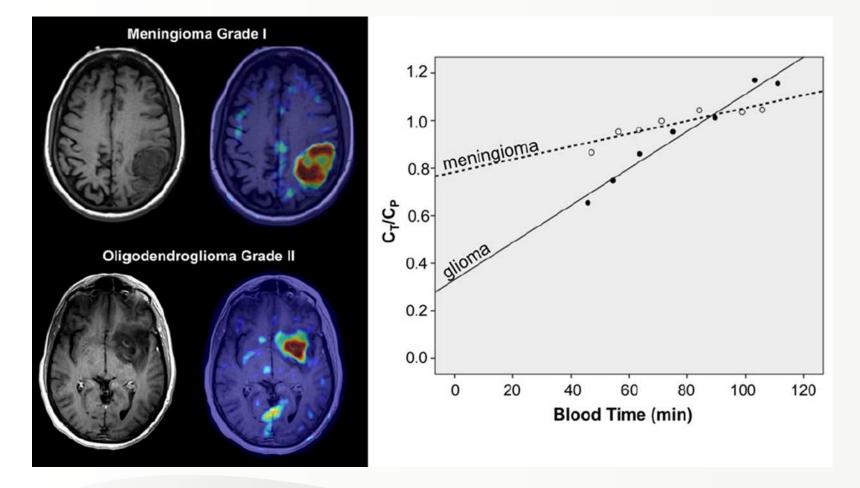
Glioblastoma

- 2. Phase I trial of indoximod in combination with temozolomide-based therapy for <u>children</u> with progressive primary brain tumors (NCT02502708)
 - 28-day cycles x 12 planned cycles, until disease progression or unacceptable toxicity
 - Relapsed/refractory brain tumor patients age 3-21 years enroll in one of 3 groups:

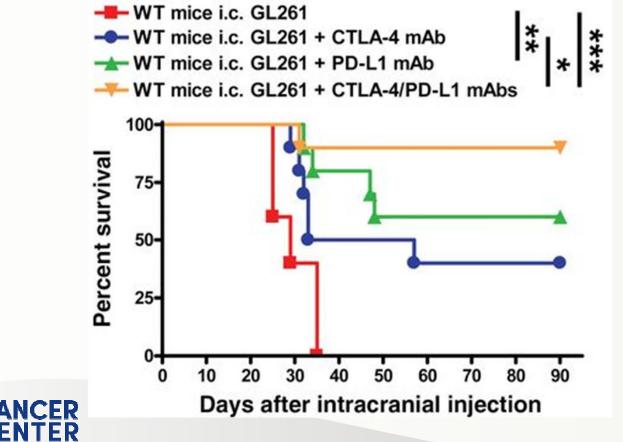

2. Phase I trial of indoximod in combination with temozolomide-based therapy for <u>children</u> with progressive primary brain tumors (NCT02502708)

- Group 1: Indoximod (dose-escalation, PO BID on days 1-28), plus temozolomide (qDay on days 1-5), for children with progressive brain tumors ("Core Regimen")
- Group 2: Indoximod (RP2D) plus temozolomide "Core Regimen" for pediatric patients with progressive brain tumors (expansion cohorts)
 - Group 2a: High-grade glioma
 - Group 2b: Ependymoma
 - Group 2c: Medulloblastoma
- Group 3: Indoximod (dose-escalation), in combination with up-front conformal radiation therapy, for children with progressive brain tumors, followed by "Core Regimen" Maintenance therapy

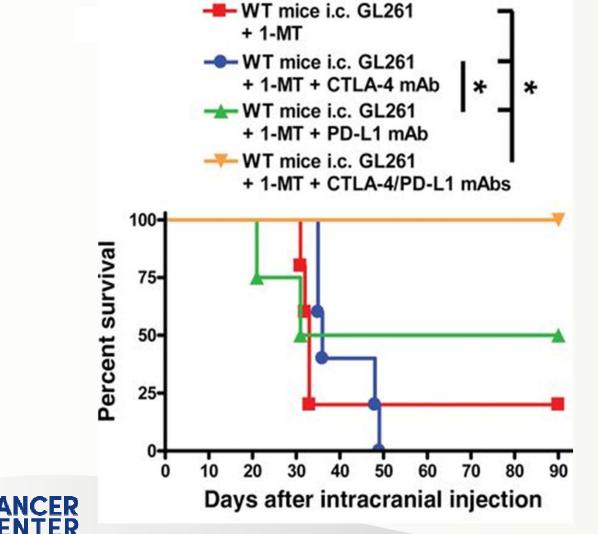
Patients who may benefit from tumor debulking


Assessment of IDO activity *in vivo*: α-[¹¹C]-methyl-L-tryptophan PET avidity

Figures adapted from: Bosnyak, et al. Neuro-oncology. 2015, 17: 1284.


Assessment of IDO activity *in vivo*: α-[¹¹C]-methyl-L-tryptophan PET avidity

Figures adapted from: Bosnyak, et al. Neuro-oncology. 2015, 17: 1284.


Immune checkpoint blockade and combinatorial checkpoint blockade

Figures adapted from: Wainwright, et al. Clinical Cancer Research. 2014, 20: 5290.

Immune checkpoint blockade and combinatorial checkpoint blockade

Figures adapted from: Wainwright, et al. Clinical Cancer Research. 2014, 20: 5290.

PD1/PDL1 pathway blockade

- 3. A randomized phase III open label study of nivolumab versus bevacizumab, and multiple phase I safety cohorts of nivolumab or nivolumab in combination with ipilimumab for glioblastoma (NCT02017717)
 - Histologically confirmed Grade IV malignant glioma
 - Cohorts 1, 1b, and 2:
 - Any recurrence of GBM
 - Previous treatment with radiotherapy and temozolomide
 - Cohort 1c:
 - First diagnosis of GBM with resectable disease
 - Cohort 1d:
 - First diagnosis of GBM with resectable disease, unmethylated MGMT

3. Multiple phase I safety cohorts of nivolumab or nivolumab with ipilimumab for glioblastoma (NCT02017717)

- Experimental Arm N: Nivolumab
 - Cohorts 1, 1c, 1d:
 - Nivolumab 3mg/kg intravenously q2 weeks until disease progression or unacceptable toxicity
- Experimental Arm N + I: Nivolumab + Ipilimumab
 - Cohort 1:
 - <u>Nivolumab 1mg/kg + Ipilimumab 3mg/kg</u> intravenously q3 weeks x 4 doses, then Nivolumab 3mg/kg q2 weeks until progression or toxicity
 - Cohort 1b:
 - <u>Nivolumab 3mg/kg + Ipilimumab 1mg/kg</u> intravenously q3 weeks x 4 doses, then Nivolumab 3mg/kg q2 weeks thereafter until progression or toxicity

3. Randomized phase III open label study of nivolumab versus bevacizumab for recurrent glioblastoma (NCT02017717)

- Experimental Arm N: Nivolumab
 - Cohort 2:
 - Nivolumab 3mg/kg intravenously q2 weeks until disease progression or unacceptable toxicity
- Comparator Arm B: Bevacizumab
 - Cohort 2:
 - Bevacizumab 10 mg/kg intravenously q2 weeks until disease progression or unacceptable toxicity

4. A phase I and open label, randomized, controlled phase II study testing the safety, toxicities, and efficacy of MK-3475 (pembrolizumab) in combination with MRI-guided laser ablation in recurrent malignant gliomas (NCT02311582)

- Unequivocal evidence of tumor progression as documented by biopsy or brain MRI scan per RANO criteria
- Proscriptive prior chemo-radiotherapy requirements
- Phase I:
 - Histologically confirmed grade III or IV malignant glioma
 - Candidate for MLA based on the size, location, and shape of the recurrent tumor
 - Surgical resection/debulking prior to MLA is allowed per standard of care
- Phase II:
 - Histologically confirmed grade IV malignant glioma (GBM)
 - Candidate for surgical resection/debulking followed by MLA treatment of residual tumor based on the size, location, and shape of the recurrent tumor

4. A phase I and open label, randomized, controlled phase II study testing the safety, toxicities, and efficacy of MK-3475 in combination with MRIguided laser ablation in recurrent malignant gliomas (NCT02311582)

- Phase I: MK-3475 + MLA
 - MK-3475 (dose-escalation) q3 weeks until progression or unacceptable toxicity
 - MLA will take place no more than 2 weeks after the first dose of MK-3475
- Phase II: MK-3475
 - MK-3475 (RP2D) will be given once prior to surgical debulking and again q3 weeks beginning 3 weeks after surgical debulking

MK-3475 + MLA

 MK-3475 (RP2D) will be given once prior to surgical debulking and again q3 weeks beginning no more than 1 week after MLA (if applicable).

5. Phase II study to evaluate the clinical efficacy and safety of MEDI4736 in patients with glioblastoma (NCT02336165)

- This is an open-label, non-randomized, multicenter Phase 2 study of MEDI4736 with three non-comparative cohorts:
- Cohort A:
 - Newly diagnosed unmethylated MGMT GBM will receive MEDI4736 every 2 weeks in combination with standard radiotherapy
- Cohort B:
 - Bevacizumab-naïve patients with recurrent GBM will receive MEDI4736 every 2 weeks as monotherapy
- Cohort C:
 - Bevacizumab-refractory patients with recurrent GBM will receive MEDI4736 every 2 weeks in combination with continued bevacizumab

PD1/PDL1 pathway blockade open for pediatric patient enrollment

6. A phase I/II clinical trial of CT-011 (pidilizumab) in diffuse intrinsic pontine glioma and relapsed glioblastoma multiforme (NCT01952769)

- Age: 3-90 years
- Study location: Jerusalem
- Diagnosis:
 - Imaging diagnosis of diffuse intrinsic pontine glioma (DIPG)
 - Glioblastoma (GBM arm has filled accrual)
- Pidilizumab (CT-011) q2 weeks, until disease progression or a serious adverse event

7. Phase I pembrolizumab in treating younger patients with recurrent, progressive, or refractory high-grade gliomas or diffuse intrinsic pontine gliomas (NCT02359565)

- Age: 1-21 years
- Diagnosis:
 - Histologically confirmed recurrent, progressive or refractory non-brainstem high-grade glioma
 - Imaging or histological diagnosis of diffuse intrinsic pontine glioma (DIPG) that is recurrent, progressive, or refractory
- Excludes patients previously treated with immune checkpoint blockade
- Pembrolizumab (using recommended adult dose) q21 days x 34 courses, in the absence of disease progression or unacceptable toxicity

Combinatorial checkpoint blockade

3. Phase I safety cohorts of nivolumab or nivolumab with ipilimumab for glioblastoma (NCT02017717)

- Cohorts 1 and 1b:
 - Recurrent glioblastoma
 - Previous treatment with radiotherapy and temozolomide
- Experimental Arm N: Nivolumab
 - Cohort 1:
 - Nivolumab 3mg/kg intravenously q2 weeks until disease progression or unacceptable toxicity
- Experimental Arm N + I: Nivolumab + Ipilimumab
 - Cohort 1:
 - Nivolumab 1mg/kg + Ipilimumab 3mg/kg intravenously q3 weeks x 4 doses, then Nivolumab 3mg/kg q2 weeks until progression or toxicity
 - Cohort 1b:
 - Nivolumab 3mg/kg + Ipilimumab 1mg/kg intravenously q3 weeks x 4 doses, then Nivolumab 3mg/kg q2 weeks thereafter until progression or toxicity

8. Phase I study of ipilimumab, nivolumab, and the combination in patients with newly diagnosed glioblastoma (NCT02311920)

- Histologically proven diagnosis of glioblastoma or gliosarcoma
- Must have:
 - a unifocal tumor confined to the supratentorial compartment,
 - and achieve a gross total or near gross total resection
- Excludes prior vaccine-based immunotherapy

8. Phase I study of ipilimumab, nivolumab, and the combination in patients with newly diagnosed glioblastoma (NCT02311920)

Following standard up-front temozolomide/radiation:

- Arm 1: Ipilimumab with temozolomide
 - Temozolomide 5 day course repeats every 28 days for up to 6 courses;
 - ipilimumab q4 weeks x 4 courses, then q3 months for 4 courses
- Arm 2: Nivolumab with temozolomide
 - Temozolomide 5 day course repeats every 28 days for up to 6 courses;
 - nivolumab q2 weeks x 64 weeks
- Arm 3: Ipilimumab and nivolumab with temozolomide
 - Temozolomide 5 day course repeats every 28 days for up to 6 courses;
 - ipilimumab q4 weeks x 4 courses;
 - nivolumab q2 weeks x 64 weeks

Checkpoint blockade with DC vaccine

9. Phase I study of nivolumab with DC vaccines for recurrent brain tumors (NCT02529072)

- First or second recurrence of WHO Grade III or IV glioma or astrocytoma in surgically accessible areas with prior histologic diagnosis
- Bevacizumab-naïve
- Radiation Therapy with ≥ 45 Gray (Gy) tumor dose, completed ≥ 8 weeks prior to study entry

9. Phase I study of nivolumab with DC vaccines for recurrent brain tumors (NCT02529072)

Nivolumab plus hCMV pp65-LAMP mRNA-pulsed autologous DCs

- Group 1:
 - Nivolumab q2 weeks x 6 doses,
 - then surgery,
 - then nivolumab and vaccine q2 weeks x 4 vaccines,
 - then nivolumab q2 weeks and monthly vaccine x 4 more vaccines,
 - then nivolumab q2 weeks until progression
- Group 2:
 - Nivolumab q2 weeks x 3 doses,
 - then nivolumab and vaccine q2 weeks x 4 vaccines,
 - then surgery,
 - then nivolumab q2 weeks and monthly vaccine x 4 more vaccines,
 - then nivolumab q2 weeks until progression

Summary and future directions

- Substantial preclinical data supports conducting clinical studies for brain cancer patients, using checkpoint blockade to target these pathways:
 - IDO
 - CTLA4
 - PD1 and PDL1
- Synergy may be achievable by combining immune checkpoint blockade with surgery, radiation therapy, laser ablation, chemotherapy, or other inflammatory treatments
- Synergy may be achievable by using combinatorial immune checkpoint therapy to target different pathways
- The Pediatric Piggyback Trial design allows pediatric trials to open while adult trials are still ongoing, once the adult dosing and toxicity data are available

