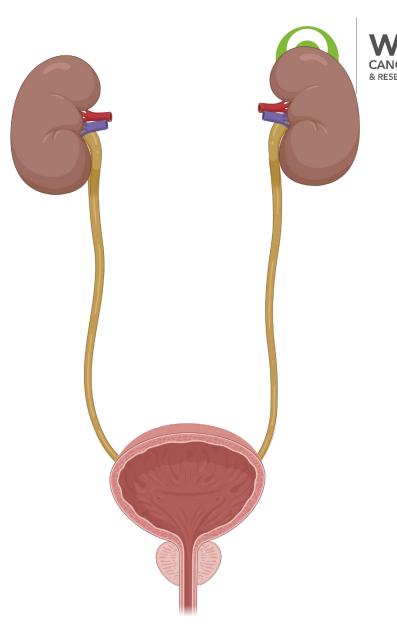


Immunotherapy for the Treatment of Genitourinary Malignancies

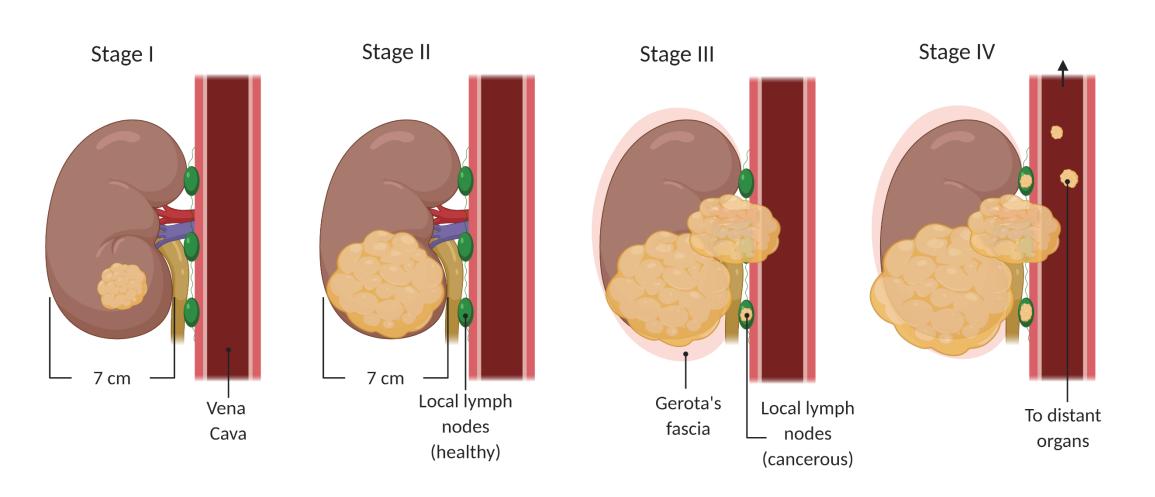
IMMUNOTHERAPY

Daniel A. Vaena, MD

West Cancer Center & Research Institute


- Consulting Fees: HMP Global, Bayer, Bristol Myers Squibb, Seattle Genetics, Exelixis, EMD Serono, Immunomedics, Eisai
- I will be discussing non-FDA approved indications during my presentation.

- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions



Renal cell carcinoma (RCC)

FDA-approved immunotherapies & RESEARCH mRCC

Society for Immunotherapy of Cancer

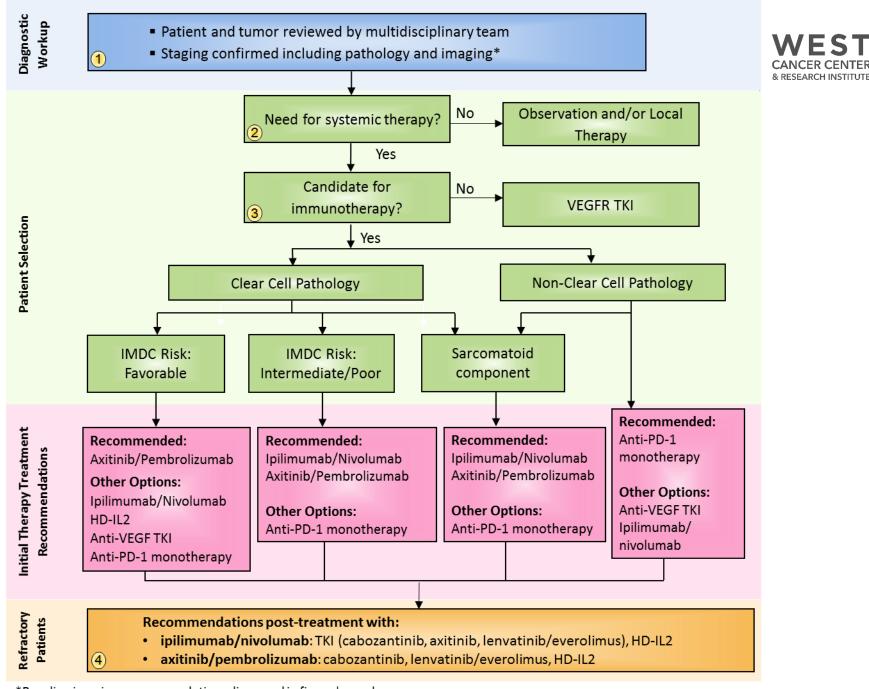
Drug	Indication	Dose		
High dose Interleukin-2	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over minutes for a maximum 14 doses, THEN 9 days of rest, followed maximum of 14 more doses (1 course)		
Interferon-α + bevacizumab	Clear cell RCC	IFN 9 MIU s.c. three times a week + bevacizumab 10 mg/kg Q2W		
Nivolumab	Clear cell RCC refractory to prior VEGF targeted therapy	240 mg Q2W or 480 mg Q4W		
Nivolumab + ipilimumab	Clear cell RCC, treatment naïve	3 mg/kg nivo plus 1 mg/kg ipi Q3W x 4 doses then nivo maintenance at flat dosing		
Pembrolizumab + axitinib	Advanced RCC, Treatment naïve	200 mg pembro Q3W or 400 mg Q6W + 5 mg axitinib twice daily		
Avelumab + axitinib	Advanced RCC, Treatment naïve	800 mg avelumab Q2W + 5 mg axitinib twice daily		
Nivolumab + cabozantinib	First-line advanced RCC	240 mg nivolumab Q2W or 480 mg Q4W + cabozantinib 40 mg daily		
		#LearnACI		

Front-line immunotherapy treatments for RCC

Study	Treatment arm(s)	Patient selection criteria	N	ORR	Median PFS (months)	Median OS (months)	
CheckMate 214	Nivolumab + ipilimumab*	Untreated, advanced clear cell RCC	550	42%	12.0	47.0	
	Sunitinib	(poor/intermediate risk)	546	26%	8.3	26.6	
KEYNOTE-426	Pembrolizumab + axitinb*	Untreated, advanced clear cell RCC	432	60%	15.4	NR	CR 9%
	Sunitinib		429	40%	11.1	35.7	
JAVELIN Renal 101	l 101 Avelumab + axitinib*	Untreated, advanced clear cell RCC	442	52.5%	ITT: 13.3 PD-L1+: 13.8	ITT: NE PD-L1+: NE	CR 5.6%
	Sunitinib		444	27.3%	ITT: 8.0 PD-L1+: 7.0	ITT: NE PD-L1+: 25.6	
1	Atezolizumab + bevacizumab	Untreated, advanced clear cell or	454	ITT: 37% PD-L1+: 43%	ITT: 11.2 PD-L1+: 11.2	ITT: 33.6 PD-L1+: 34.0	
	Sunitinib	sarcomatoid RCC	461	ITT: 33% PD-L1+: 35%	ITT: 8.4 PD-L1+: 7.7	ITT: 34.9 PD-L1+: 32.7	

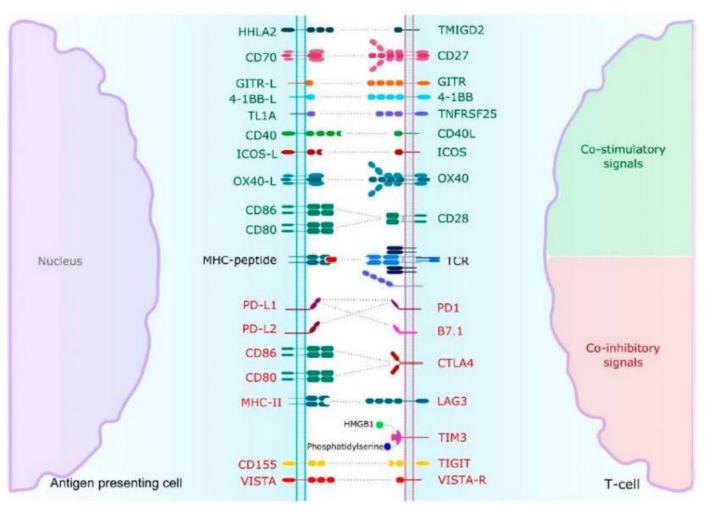
Tannir, ASCO-GU 2020; Pilmack, ASCO 2020; Choueiri, Ann Oncol 2020; Rini, Lancet 2019. *FDA-approved IO regimen

© 2020–2021 Society for Immunotherapy of Cancer



- CLEAR: pembrolizumab + lenvatinib (vs sunitinib) Motzer ASCO GU 2021
 - ORR 71%, mPFS 23.9 mo, mOS NR
 - CR 16.1%
- Checkmate-9ER: nivolumab + cabozantinib (vs sunitinib) Choueiri ESMO 2020
 - ORR 55.7%, mPFS 16.6 mo, mOS NR
 - CR 8%

SITC Cancer Immunotherapy Guideline for advanced renal cell carcinoma



*Baseline imaging recommendations discussed in figure legend.

Notes: 1) Clinical Trials are always an option for any patient, in any category. 2) This recommendation may change as data matures.

In development: additional immunotherapy approaches

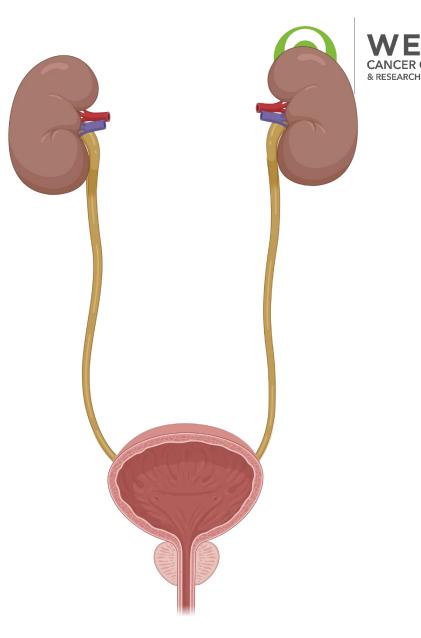
WEST CANCER CENTER & RESEARCH INSTITUTE

sitc

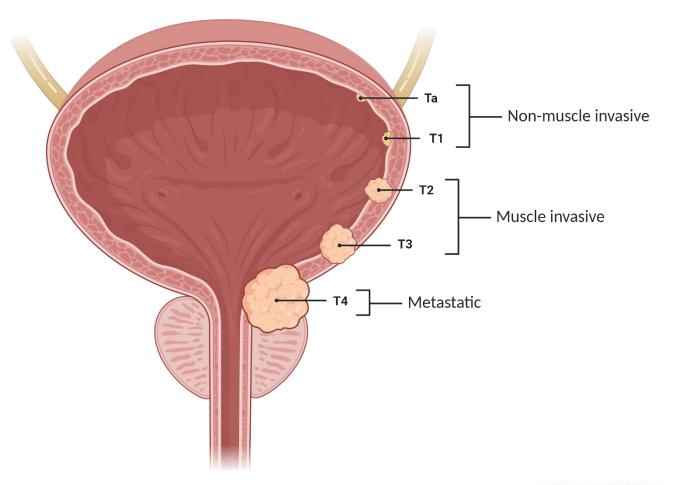
notherapy of Cance

AAEM

ACCC


- Which second line therapy to use, depending on which first line combination was given?
- If patients have toxicity, how to differentiate IO from VEGF TKI toxicity and to address which treatment to use next?
- For oligometastatic cases, how do we utilize information on CR rates and role of possible subsequent surgery? Is there still a role for cytoreductive nephrectomy as well?

- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions



Urothelial carcinoma (UC)

Approved checkpoint inhibitor for non-muscle invasive bladder cancer

Drug	Indication	Dose
Pembrolizumab	BCG-unresponsive, high-risk NMIBC, with or without papillary tumors and ineligible for cystectomy	200 mg Q3W or 400 mg Q6W

Response, n (%)	KEYNOTE-057 cohort A (n=97)
Complete response	40 (41.2)
Non-complete response	56 (57.7)
Persistent	40 (41.2)
Recurrent	6 (6.2)
NMIBC stage progression	9 (9.3)
Progression to T2	0
Extravesical disease	1 (1.0)
Non-evaluable	1 (1.0)

Approved checkpoint inhibitors for mUC progressing after cisplatin

Drug	Indication	Dose
Avelumab	Advanced/metastatic UC	10 mg/kg Q2W
Nivolumab	Advanced/metastatic UC	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Advanced/metastatic UC	200 mg Q3W or 400 mg Q6W
Atezolizumab	Advanced/metastatic UC	840 mg q2w or 1200 q3w or 1680 q4w

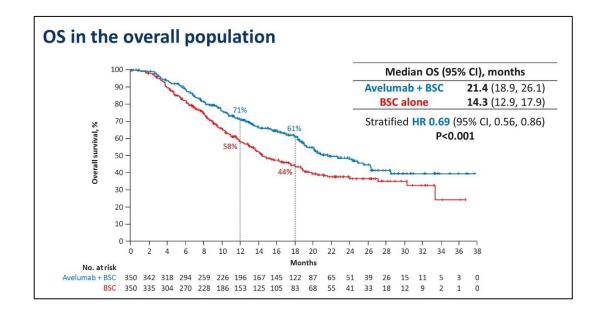
Approved checkpoint inhibitors for mUC – *cisplatin ineligible*

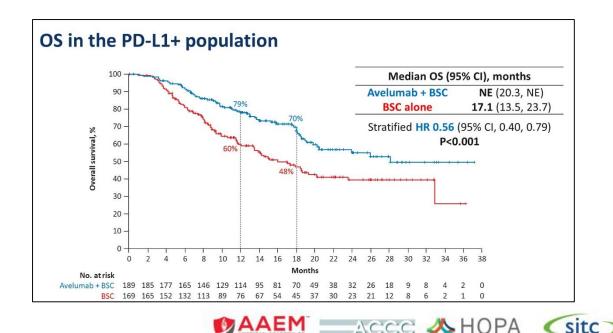
Drug	Indication	Dose
Atezolizumab	Advanced/metastatic UC (PD-L1 ≥5%)	1200 mg Q3W
Pembrolizumab	Advanced/metastatic UC (PD-L1 CPS ≥10)	200 mg Q3W or 400 mg Q6W

June 2018

FDA limits the use of atezolizumab and pembrolizumab for some urothelial cancer patients

- Locally advanced or metastatic urothelial carcinoma and ineligible for cisplatin-based chemo and with detectable PD-L1 expression in tumor (CPS ≥ 10, pembro; IC ≥ 5% tumor area, atezo)
- Patients ineligible for any platinum-containing chemotherapy regardless of PD-L1 status



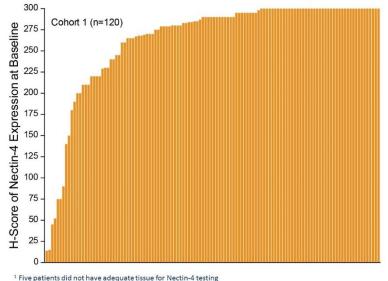

Approved checkpoint inhibitor for maintenance treatment

totherapy of Can

Drug	Indication	Dose
Avelumab	Maintenance of locally advanced/metastatic UC without progression on first-line Pt chemotherapy	800 mg Q2W

Powles, ASCO 2020.

© 2020–2021 Society for Immunotherapy of Cancer



Approved antibody-drug conjugate for mUC

Drug	Indication	Dose
Enfortumab vedotin	Locally advanced/metatstatic UC with previous αPD-1/PD-L1 and Pt- based chemotherapy	1.25 mg/kg IV on days1, 8, and 15 of each28-day cycle

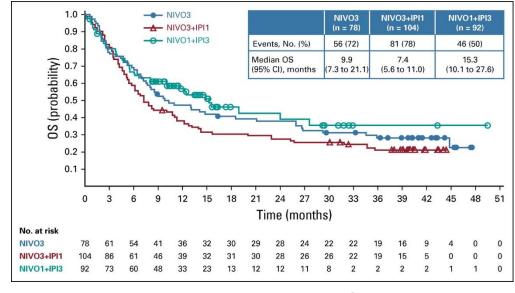
EV-201: Cohort 1 Nectin-4 Expression

EV-201: Cohort 1 Change in Tumor Measurements per BICR

Petrylak, ASCO 2019. © 2020–2021 Society for Immunotherapy of Cancer SITC

Society for Immunotherapy of Cano

Investigational approaches in m


- Chemoimmunotherapy and immunotherapy intensification approaches
 - IMvigor130: Role of concurrent chemoimmunotherapy (atezolizumab)
 - Positive for PFS but immature for OS
 - Galsky et al Lancet 2020; 395 (10236):1547
 - DANUBE: Role of double immunotherapy (durvalumab tremelimumab)
 Powles et al Lancet Sept 21, 2020
 - KEYNOTE-361: Role of concurrent chemoimmunotherapy (pembrolizumab)
 Alva ESMO 2020
 - Other chemoimmunotherapy ongoing trials
- Enfortumab vedotin combinations
- Novel targeted therapy for mutations and fusions
- Novel IO agents

In development: Ipilimumab + Nivour Research Institute CheckMate 032

Treatment arm	n	ORR	Median PFS	Median OS	Grade 3-4 TRAEs
Nivolumab 3 mg/kg Q3W	78	ITT: 25.6% PD-L1+: 26.9%	2.8 months	9.9 months	26.9%
Nivolumab 3 mg/kg + ipilimumab 1 mg/kg	104	ITT: 26.9% PD-L1+: 35.5%	2.6 months	7.4 months	30.8%
Nivolumab 1 mg/kg + ipilimumab 3 mg/kg	92	ITT: 38.0% PD-L1+: 58.1%	4.9 months	15.3 months	39.1%

Sharma, J Clin Oncol 2019.

© 2020–2021 Society for Immunotherapy of Cancer



In development: NKTR-214 + nivolumab

Treatment	n	ORR
NKTR-214 + nivolumab	27	48%

After treatment, 70% of patients with PD-L1-negative tumors converted to PD-L1-positive.

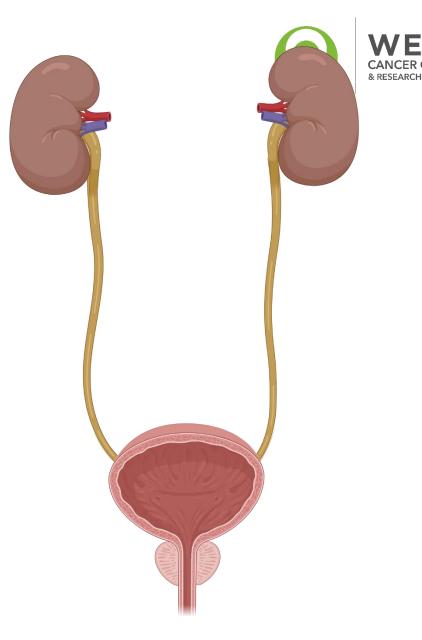
Siefker-Radtke, ASCO-GU 2020.

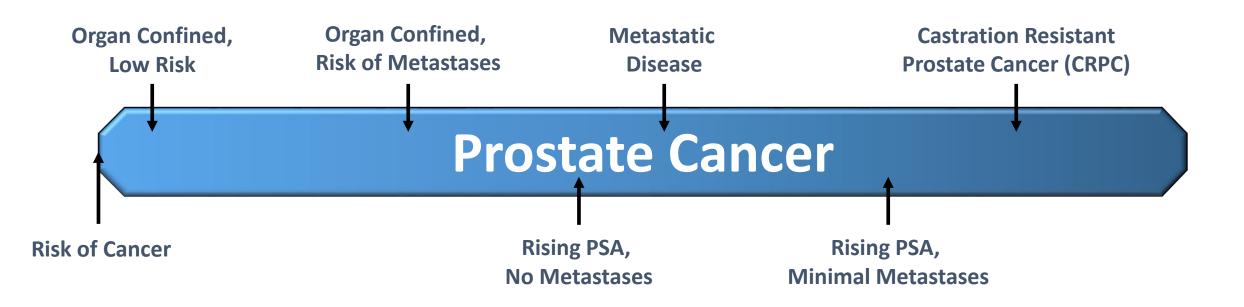
© 2020–2021 Society for Immunotherapy of Cancer

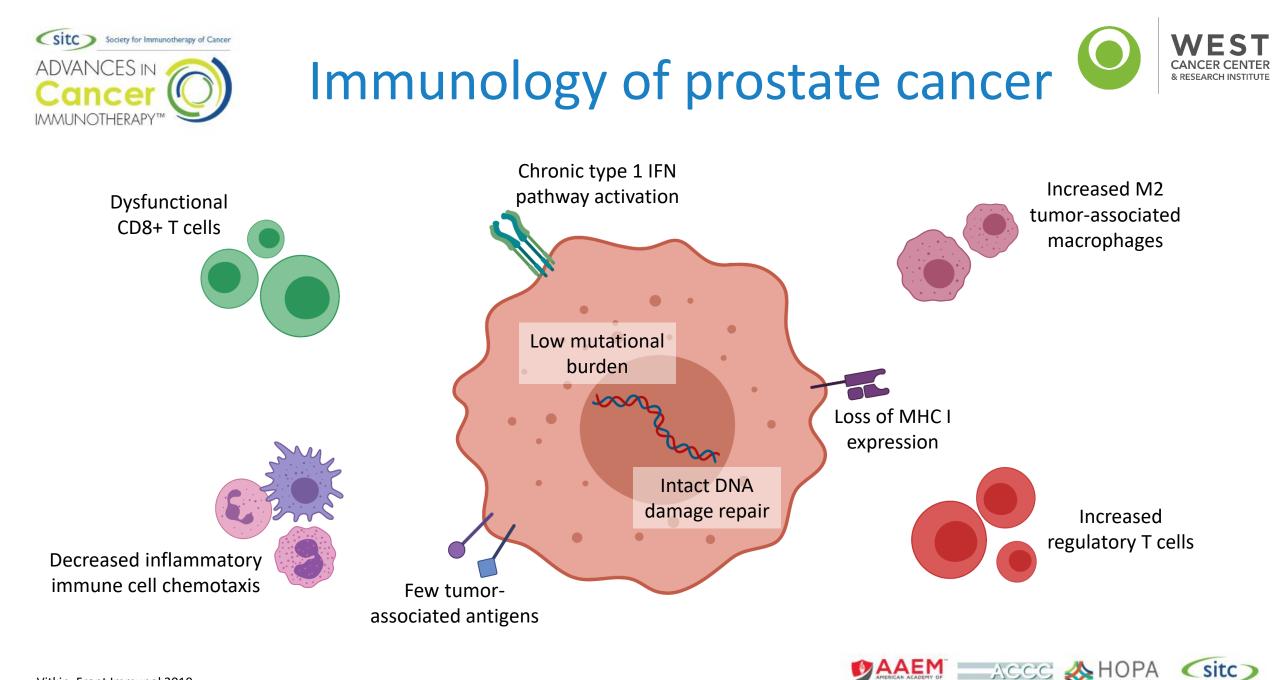
sitc

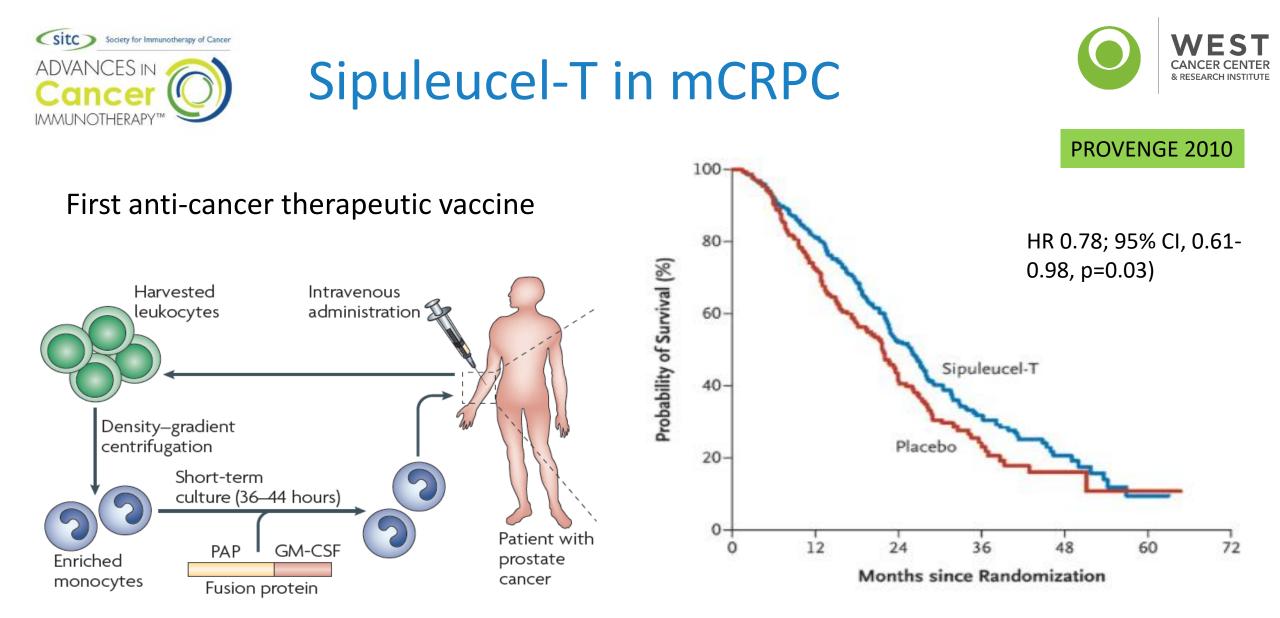
Society for Immunotherapy of Cancer

How do I sequence mUC in 2021


- First-line
 - Determine cisplatin eligibility (full dose or split dose D1/8)
 - Consider first-line cytotoxic chemotherapy, typically GC; then consider avelumab switch maintenance
 - Consider first-line clinical trials but take into account other recently reported trials and the pros and cons of maintenance avelumab, which may or may not be allowed in ongoing trials
 - While on first-line therapy, obtain comprehensive molecular profile from archival tissue to be ready for future decision-making upon progression
 - Second-line
 - Role of immunotherapy and patient selection
 - Role of FGFR inhibition and patient selection
 - Role of enfortumab vedotin and patient selection
 - Combination clinical trials or novel molecular targets
- Third-line and beyond
 - Same as second-line options, depending on prior therapy
 - Combination clinical trials, novel molecular targets, or novel agents
 - Cytotoxic chemotherapy (taxanes or other)


- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions





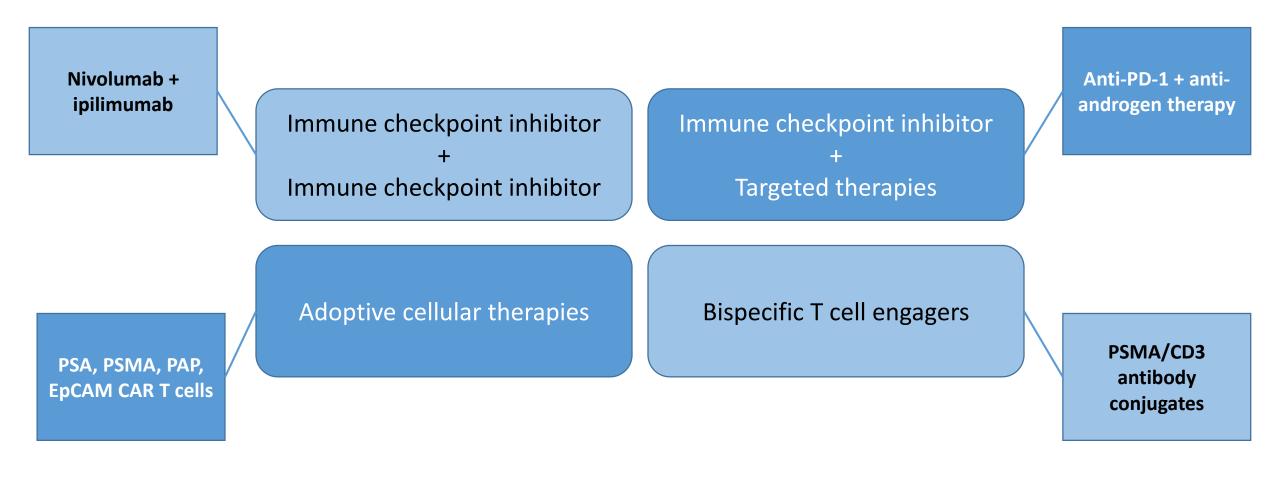
Drake et al. Curr Opin Urol 2010 Kantoff et al. NEJM 2010

© 2020–2021 Society for Immunotherapy of Cancer

Immunotherapy landscape in prostate cancer

Trial	Treatment	Population	Key results
KEYNOTE-199	Pembrolizumab	RECIST-measurable PD-L1+ mCRPC	ORR: 5%
		RECIST-measurable PD-L1- mCRPC	ORR: 3%
		RECIST nonmeasurable mCRPC	DCR: 37%
KEYNOTE-365	Pembrolizumab + enzalutamide	Progression on previous hormonal and chemotherapies	PSA response rate: 21.8% Median OS: 20.4 months
	Pembrolizumab + olaparib		PSA response rate: 13% Median OS: 14 months
IMbassador250	Atezolizumab + enzalutamide	Progression on previous hormonal and chemotherapies	Median OS: 15.2 vs 16.6 months
	Enzalutamide		

- 3.1% incidence in 1033 patients at MSKCC
- 11 patients received checkpoint inhibitor therapy
- 6 patients had greater than 50% PSA decline
- 4 patients had radiographic responses
- 5 patients were still on therapy as long as 89 weeks


Abida et al JAMA Oncol 2019 April 1; 5(4):471

Future directions for prostate care west institut immunotherapy

AAEM ACCC

In development: nivolumab + ipilimumab in mCRPC

Trial	Treatment	Population	ORR	Median OS
CheckMate 650	Nivolumab + ipilimumab,	Progression on hormonal therapy, no chemotherapy	25%	19 months
	than nivalumah	Progression on chemotherapy	10%	15.2 months

- Higher ORR in:
 - PD-L1 > 1%
 - DNA damage repair deficient
 - homologous recombination deficiency
 - high tumor mutational burden

- Established role of immunotherapy in RCC and urothelial carcinoma
- In RCC, many front-line checkpoint inhibitor combinations are approved
- Multiple checkpoint inhibitors approved for advanced/metastatic urothelial carcinoma, as well as other therapeutic spaces in UC
- Low immune engagement in prostate cancer has limited the application of immunotherapy in this disease however interest remains with multiple novel immunotherapy agents in development; molecular profile is commonly obtained and may also assist with MSI high detection

Additional Resources

 Rini et al. Journal for ImmunoTherapy of Cancer
 (2019) 7:354

 Journal for ImmunoTherapy of Cancer
 Open Access

 POSITION ARTICLE AND GUIDELINES
 Open Access

 The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC)
 Image: Constant of the state of the treatment of advanced renal cell carcinoma (RCC)

 Brian I. Rini¹, Dena Battle², Robert A. Figlin³, Daniel J. George⁴, Hans Hammers⁵, Tom Hutson⁶, Eric Jonasch⁷, Richard W. Joseph⁸, David F. McDermott⁹, Robert J. Motzer¹⁰, Sumanta K. Pal¹¹, Allan J. Pantuck¹², David I. Quinn¹³, Virginia Seery⁹, Martin H. Voss¹⁰, Christopher G. Wood⁷, Laura S. Wood¹ and Michael B. Atkins^{14*} O

Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 DOI 10.1186/s40425-017-0271-0

POSITION ARTICLE AND GUIDELINES

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew I. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Eila C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor III¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷

consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Journal for ImmunoTherapy

of Cancer

(CrossMark

Open Access

Acknowledgements

• Some figures created using biorender.com

