Molecular Manipulation of the Anti-tumor Immune Response

Drew Pardoll, SKCCC, JHMI

How can we finally develop a successful therapeutic vaccine approach?!?!

- Use decent vaccines (Multivalent, indispensable Ag, good adjuvants, costim., DC targeting)
- Use vaccines in the low tumor burden, MRD setting (50-75% of cancer deaths due to recurrence after MRD)
- Combine vaccines with agents that break tumor-induced tolerance and inhibition of effector T cell function

GVAX + auto-SCT for Refractory AML

Hy Levitsky/Ivan Borrello together with CellGenesys

K562/GM-CSF Vaccine for residual CML on Imatinib Hy Levitsky, Doug Smith

Example of 2 pts

Compiled results of 17 pts

Best previous	Post vaccine response	
response	FISH-/PCR+	FISH-/PCR-
FISH+/PCR+ (5)	2/5	1/5
FISH-/PCR+ (12)	_	4/12

Phase I Study of GM-CSF transduced allogeneic vaccine post resection for stage II/III pancreatic cancer Liz Jaffee, Dan Laheru, Johns Cameron, Charles Yeo

Three levels at which the anti-tumor immune response must be manipulated => combination rx

Three levels at which the anti-tumor immune response must be manipulated => combination rx

Stat 3 as a Major Signal Transducer in Tumor Cells

Tumors Inactivate DCs via a Stat3 Activation Cascade

Maturation/Activation

Stat3 is constitutively activated in tumor infiltrating DCs

Tumor infiltrating Stat3-/- DCs express more MHC II, CD80 and CD86

Stat3 is constitutively activated in tumor infiltrating NK cells and neutrophils

Inhibition of Stat3 in bone marrow cells leads to T-cell mediated anti-tumor effects

Stat3 ablation prior to introduction of tumor

Stat3 ablation 1 wk after introduction of tumor

Stat3 restrains tumor immune surveillance

Targeting Stat3 with an inhibitor reduces Stat3 in tumor infiltrating DCs

In vitro sensitivity to CPA-7

In vivo sensitivity to CPA-7 of MB49

Defining regulatory T cell specific molecules as targets for therapeutic manipulation

Genes Involved in Expression of the Tolerant Phenotype in T Cells

phenotypes. Bioinformatics 20: 364-373, 2004

HAM Analysis of Tolerance Specific Genes

Symbol	IN VIVO Ratio Anergy / Memory	IN VITRO Ratio Anergy / Resting	NAME - FROM GO Ontogeny Search	
Lag3	3.6	8.7	Lymphocyte-activation gene 3	
Bcl3	3.5	14.8	B-cell leukemia/lymphoma 3	
Tnfrsf4	2.9	5.7	tumor necrosis factor receptor superfamily member 4	
Nfatc1	2.7	14.3	NF-AIc isoform a (NF-AIca)	
115	2.7	10.7	Interleukin 5	
Bcat1	2.6	34.0	branched chain amino acid transferase 1, cytosolic	
Ptocs	2.5	4,5	Protein tyrosine phosphatase, receptor type, S	
Mapka pk2	2.4	10.5	MAP kinase-activated protein kinase 2	
Tub b5	1,8	4.5	beta-tubulin (isotype Wheta 5)	
Bcap37	1.8	4.1	B-cell receptor-associated protein 37	
Fhl2	1.7	8.3	Four and a half LIM domains	
ll1r2	1.5	3.9	Interleukin 1 receptor, type II	
Cish	1,4	5.9	Cytokine inducible SH2-containing protein	
Ndrg1	1.4	8.0	N-myc downstream regulated gene 1	
Etf1	1.4	4.6	Eucaryotic tranlation termination factor 1	
Erkah	1,4	6.0	Protein kinase C, eta	
Çaji	1.3	24.7	corniction-like protein	
Tnfsf11	1.2	26.0	Tumor necrosis factor (ligand) superfamily, member 11	
II13	1.2	95.7	Interleukin 13	
Kenn4	1.2	5.2	calcium -activated potassium channel, small conductance	
Ccl1	1.1	159.9	chemokine (C-C) motif ligand 1	
Egr2	1.1	75.9	Early growth response 2	
ler3	1,1	8.7	immediate early response 3	
Gch	1.1	30.5	GTP cyclobydrolase 1	
Rgs16	1.1	13.4	regulator of G protein signalling 16	
Csf1	1.1	3.7	colony-stimulating factor 1 (macrophage)	
Fkbp8	1.0	8.2	FK508 binding protein 8	
Nr4a1	1.0	46.9	nuclear receptor subfamily 4, group A member 1	
Lcp2	1.0	4,4	lymphocyte cytosolic protein 2	
Dnajc5	1.0	16.1	OnaJ (Hsp40) homolog	

LAG-3 is differentially expressed between Teffector/memory & anergic/Treg cells

LAG-3 is differentially expressed between Teffector/memory & anergic/Treg cells

Transduction of CD4+CD25- T cells with wild type LAG-3 confers regulatory capacity

-GFP:6.5tg LAG-3/GFP:6.5tg →LAG-3.Y73FΔCY/GFP:6.5tg **−**□**−** Effectors only 10000 1000 100 .125:1 .25:1 .5:1 suppressor:effector ratio

Do Anti-LAG-3 antibodies break tumor tolerance?

Selective Expression of HA in the Prostate of Probasin-HA Transgenic Mice

The TRAMP Mouse (Pro-SV40Tag)

- TRansgenic Adenocarcinoma of the Mouse Prostate
- T Antigen Downregulates Both p53 and Rb pathways
- An "AUTOCHTHONOUS" model
- PIN at 8-12 Weeks
- Moderately Differentiated Adenocarcimoma at 18 weeks
- Poorly Differentiated Adenocarcinoma at 24-30 weeks
- Metastases to Lung, Lymph Nodes (Occasionally Bone)
- Death Before 33 Weeks

The ProHA x TRAMP Mouse (ProTRAMP)

- ProSV40 –
 Oncogenic
- ProHA A Tumor and Tissue Specific Antigen
- Disease grossly identical to TRAMP

Normal prostate

ProTRAMP prostate

Tumorigenesis Increases Prostatic Antigen Recognition

This Increased Recognition is Tolerogenic

Can LAG-3 blockade alter endogenous T cell function?

Self- and tumor-tolerized endogenous CTL regain effector function in vivo after LAG-3 blockade

α-LAG-3 leads to endogenous CD8 migration and TNF-α production within prostates of ProTRAMP mice

Prostate tissue from Pro-Tramp mice 7 days post-AT

Clone 4 Adoptive Transfer Clone 4 Adoptive Transfer + anti-LAG-3

Johns Hopkins
Chuck Drake
Joe Grasso

St Jude Dario Vignali Craig Workman

Moffitt/City of Hope
Hua Yu
Richard Jove
Marcin Kortelewski