

Biomaterials: basic biology Reconstruction after tumor resection and modeling the tumor microenvironment

J H Elisseeff Morton Goldberg Professor

SITC Session 306 Engineering Immunity November 2020

35th Anniversary Annual Meeting & Pre-Conference Programs

sitc

#SITC2020

Disclosures

- Founder, Aegeria Soft Tissue
- Former consultant/SAB, Unity Biotechnology and Acell Inc
- Research Funding from BMS and Allergan

BIOMATERIALS FOR RECONSTRUCTION Rebuilding tissue after tumor resection

SYNTHETIC IMPLANTS

BIOLOGICAL SCAFFOLDS

AlloDerm™ Permacol™

Biodesign® Dural Graft Durepair™

Esophagus

Surgisis®

SYNTHETIC AND BIOLOGICAL MATERIALS Replacing physical structure versus re-growing tissue

SYNTHETIC

Synthetic implants induce a foreign body response (fibrotic capsule)

BIOLOGICAL

Do biological scaffolds that support tissue repair promote tumor growth?

Biological scaffold co-implantation with tumor cells Replacing physical structure versus re-growing tissue

Wolf, et al, Science Translational Medicine, 2019

Biological scaffolds reduce tumor growth

Biological scaffolds synergize with checkpoint blockade T_H2/M2 with biomaterials differs from tumor

adj p-val < 0.01 adj p-val < 0.05 adj p-val > 0.05

- - Saline + αPD-1

SEMINARS IN MEDICINE OF THE BETH ISRAEL HOSPITAL, BOSTON (ARCHIVE)

December 25, 1986 N Engl J Med 1986; 315:1650-1659 DOI: 10.1056/NEJM198612253152606

Tumors: Wounds That Do Not Heal

Masters of Immunology

Tumors: Wounds That Do Not Heal—Redux 📟

Cancer Immunology Research 2015

Harold F. Dvorak

Abstract

	Similar associated than 150 y our then 1 VEGE, L si	ities between tumors and the inflammatory response view with wound healing have been recognized for more ABSTRACT plasma proteins; activation of the clotting system outside the vascular system; deposition of an extravascular fibrin gel that	
REVIEW	heal. Mor wound-he maintenan	Striking similarities between wound healing, epimorphic regeneration and the progression of solid tumors have been uncovered by recent studies. In this Review, we discuss systemic effects of tumorigenesis	
Paralle	els	that are now being appreciated in epimorphic regeneration, including genetic, cellular and metabolic heterogeneity, changes in circulating factors, and the complex roles of immune cells and immune modulation	neration
Alan Y. Wo	ong ¹ a	at systemic and local levels. We suggest that certain mechanisms involved in healing/fibrosis enabling regeneration may be co-opted by cancer to promote growth at primary and metastatic sites. Finally, we advocate that working with a	
		unified approach could complement research in both fields.	

BIOMATERIALS AS MODELS FOR THE TUMOR MICROENVIRONMENT

Wound microenvironment

Tumor microenvironment

There is a continuum of wounds - from healing to non-healing - that are regulated by intrinsic and extrinsic factors that correlate with tumor properties

New discoveries in wound environment \rightarrow implications for tumors and immunotherapy

Healing wound Inflammation→resolution

Articular joint /cartilage

p16^{INK4a} cells (Senescence)

Non-healing wound

Fibrosis, chronic inflammation

S, children and the second second

MODELS OF HEALING AND NON-HEALING TISSUE ENVIRONMENTS

Different biomaterials create unique immune and tissue environments

MODELS OF HEALING AND NON-HEALING TISSUE ENVIRONMENTS

Material No Treatment

Systemic Changes

Macrophages

Sadtler et al., Science, 2016

MODELS OF HEALING AND NON-HEALING TISSUE ENVIRONMENTS

Fibrosis Picrosirius Red

Breast implant Fibrosis

THE IMMUNE RESPONSE TO SYNTHETIC MATERIALS

Lee et al, Archives of Plastic Surgery

THE SYNTHETIC IMPLANT RESPONSE

24.0

Dendritic

CD3⁺ T cells

48.8

CD14 84.6

Monocytes

CD15

Granulocytes

Eosinophils

2.97

Chung et al., Elisseeff, *Science Translational Medicine,* April 2020.

T CELL RESPONSE TO BREAST IMPLANTS

Average patient age was 56 (range of 41-70 years)

Average implant residence time was 41 months (range of 1-360 months).

Loss of IL-17 signaling reduces macrophages and fibrosis

Liam Chung

Senescent cells associated with synthetic implants during chronic Th17

IL-17, fibrosis, and senescent cells

p16 positive cells present in WT but not IL17 transgenic animals

p16 positive cells also present around breast implants

SENESCENT CELLS: a key factor in a non-healing wound?

Replicative senescence

Oncogenic senescence

Redox senescence

Immunologically-induced senescence?

SnCs do NOT overlap with CAF subsets and cannot be detected by single cell

CLEARANCE OF SNC PROMOTES HEALING AND REDUCES FIBROSIS

TISSUE REPAIR AFTER SENOLYSIS

Kim, Jeon et al., Nature Medicine 2017

IMMUNOLOGICALLY-INDUCED SENESCENCE

Th17

Reduction in the FBR with treatment

WHICH CELL TYPES ARE SENESCENT IN WOUND AND TUMOR?

Matt Wolf

15

SENESCENCE IN THE TUMOR MICROENVIRONMENT

Senescence formation in the TME

Consistent in B6-F10 Variable in young MC38 Consistent in aged MC38

<section-header><section-header>

Human p16

Colon cancer

Matt Wolf

SnC's INCREASE IO-RESPONSIVE TUMORS IN A SEX-DEPENDENT MANNER

MC38 tumors +/- PD-L1, 74 wk old mice

WHAT IS THE SnC PHENOTYPE AND REQUIREMENT FOR RESPONES?

Clinical relevance: SnCs in lung tumor neoadjuvant PD-1 clinical studies

Janis Taube Tricia Cotrell Franck Housseau (colon cancer)

Do SnCs correlate with response/resistance and how does location impact response?

Wound microenvironment

Tumor microenvironment

Healing and non-healing wounds and biomaterial models to define the tumor microenvironment and IO responsiveness

Acknowledgements

Liam Chung Heather Jacobs Kaitlyn Sadtler Okhee Jeon Chaekyu Kim Matthew Wolf, PhD Xiaokun Wang, PhD Sven Sommerfeld, PhD Jim Andorko Chris Cherry Hong Zhang **David Maestas**

Powell Lab

Drew Pardoll Franck Housseau Hongni Fan Ada Tam

Clifton Bingham Judy Campisi, Buck Inst Morton Goldberg Chair

SUPPORTED BY RPB

Research to Prevent Blindness

@JHElisseeff

ΟG

TTEC: Translational Tissue Engineering Center

POSTDOC POSITIONS AVAILABLE! LAB MANAGER/TECH POSITIONS AVAILABLE!

HQ Mao

Adding senescent cells (artificial) increases tumor growth

SnC doping and IO responsiveness

Unpublished data