

Immunotherapy of Hematologic Malignancies

Alex Herrera, MD

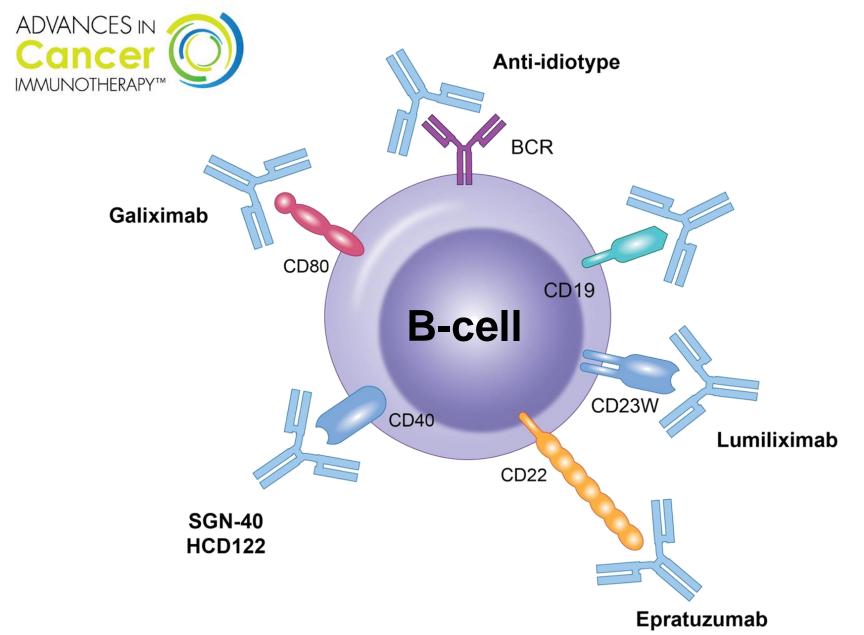
City of Hope

Disclosures

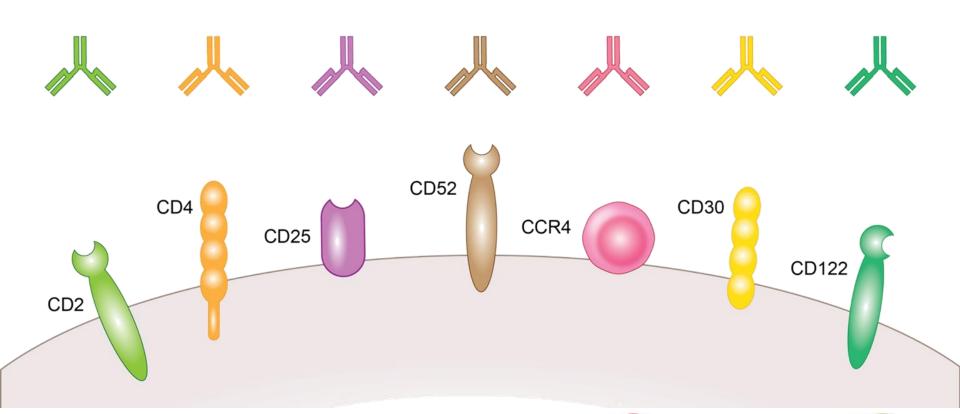
- Bristol-Myers Squibb, Genentech, Inc., Merck & Co., Inc., Pharmacyclics LLC, Consulting Fees
- I will be discussing non-FDA approved indications during my presentation.

Patient Selection Criteria for Immune-Based Approaches

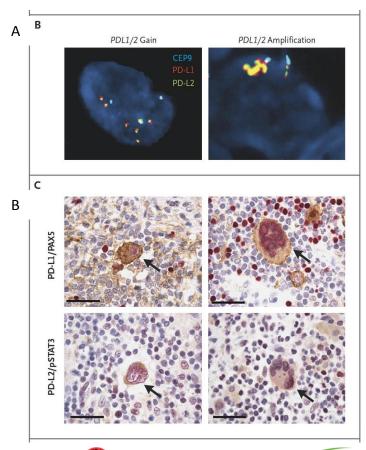
- Expression of the desired antigen for CAR-T therapy:
 - e.g. CD19 or BCMA for CAR-T cells
- Disease burden
 - <30% in certain CAR-T trials to minimize the risk of cytokine release syndromes
- Expression of the ligand for checkpoint inhibition
 - e.g. PD-L1 expression for anti-PD-1 therapy
- Presence of co-morbidities:
 - e.g. Presence of active autoimmune diseases which could be worsened



Lymphomas

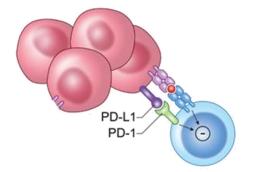


Several monoclonal antibodies targeting T-cell lymphomas



PD-L1 Expression in Hodgkin's Lymphoma

- Reed-Sternberg cells express both PD-L1 and PD-L2
- Expression of ligands increases with advanced disease
- Unclear whether PD-L1/L2 expression correlates with response to treatment

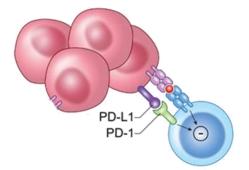


Anti-PD-1 in Hodgkin's Lymphoma

T cell

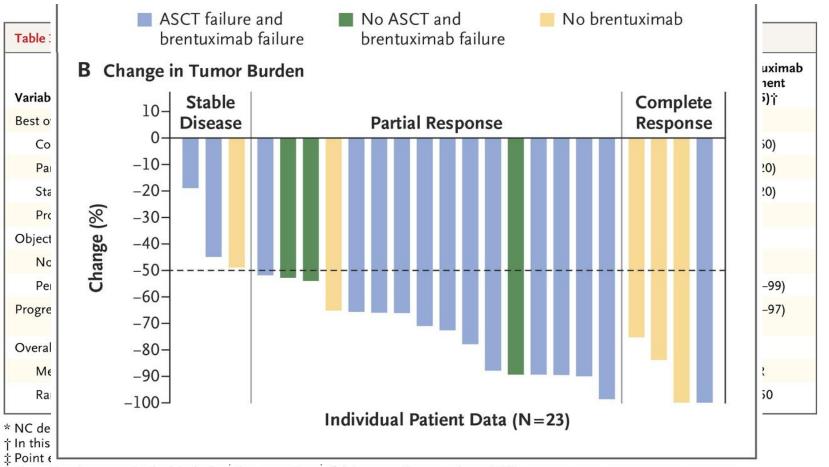
Variable	All Patients (N = 23)	Failure of Both Stem-Cell Transplantation and Brentuximab (N=15)	No Stem-Cell Transplantation and Failure of Brentuximab (N = 3)	No Brentuximab Treatment (N = 5)†
Best overall response — no. (%)				
Complete response	4 (17)	1 (7)	0	3 (60)
Partial response	16 (70)	12 (80)	3 (100)	1 (20)
Stable disease	3 (13)	2 (13)	0	1 (20)
Progressive disease	0	0	0	0
Objective response				
No. of patients	20	13	3	4
Percent of patients (95% CI)	87 (66–97)	87 (60–98)	100 (29–100)	80 (28–99)
Progression-free survival at 24 wk — % (95% CI)‡	86 (62–95)	85 (52–96)	NC(80 (20–97)
Overall survival — wk				
Median	NR	NR	NR	NR
Range at data cutoff¶	21–75	21–75	32–55	30–50

^{*} NC denotes not calculated, and NR not reached.


 $[\]dagger$ In this group, two patients had undergone autologous stem-cell transplantation and three had not.

[‡] Point estimates were derived from Kaplan–Meier analyses; 95% confidence intervals were derived from Greenwood's formula.

[§] The estimate was not calculated when the percentage of data censoring was above 25%.

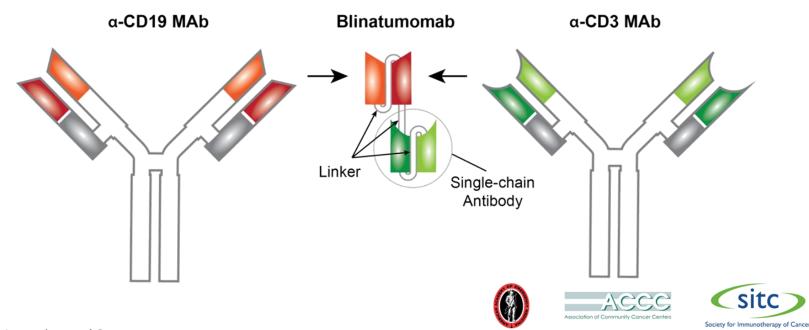

Responses were ongoing in 11 patients.

Anti-PD-1 in Hodgkin's Lymphoma

T cell

The estimate was not calculated when the percentage of data censoring was above 25%.

 \P Responses were ongoing in 11 patients.


Nivolumab in R/R B Cell Malignancies: Efficacy

Types	N	ORR, n (%)	CR, n (%)	PR, n (%)	SD, n (%)
B cell lymphoma	29	8 (28)	2 (7)	6 (21)	14 (48)
DLBCL	11	4 (36)	1 (9)	3 (27)	3 (27)
FL	10	4 (40)	1 (10)	3 (30)	6 (60)
T cell lymphoma	23	4 (17)	0	4 (17)	10 (43)
Mycosis fungoides	13	2 (15)	0	2 (15)	9 (69)
PTCL	5	2 (40)	0	2 (40)	0
Multiple myeloma	27	0	0	0	18 (67)
Primary mediastinal B- cell lymphoma	2	0	0	0	2 (100)

BiTE: Blinatumumab

- Combines the F(ab) of an antibody with an anti-CD3 F(ab)
- Lacks the Cf region
- Requires continuous infusions
- Shown considerable activity in:
 - Follicular NHL
 - DLBCL
 - ALL

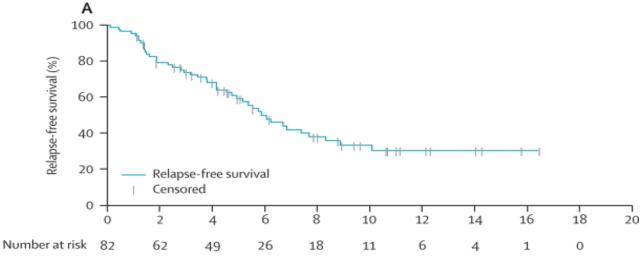
Case Study #1

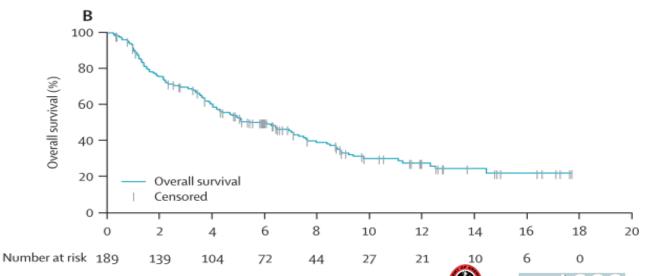
 24 year-old male with a history of stage IIIB classical Hodgkin lymphoma who entered PET-negative remission after ABVD x 6. Relapsed within one year and underwent ICE salvage therapy x 3 with PR followed by ASCT then received brentuximab vedotin maintenance until 7 months after ASCT when B symptoms recur. PET shows FDG-avid disease above the diaphragm, biopsy confirms relapse.

Which of the following is true?

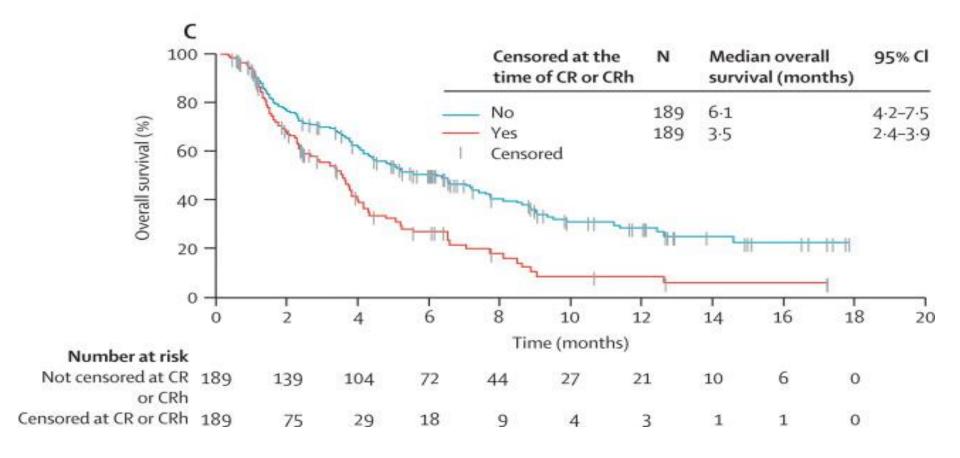
- A. Most patients with HL will achieve PET-negative remission with a PD-1 inhibitor
- B. Most patients with HL will respond, but a minority of patients will achieve PET-negative remission with a PD-1 inhibitor
- C. Pembrolizumab but not Nivolumab is FDAapproved for this indication
- D. Nivolumab is approved only for patients with PD-L1 expression in a tumor sample

Leukemia



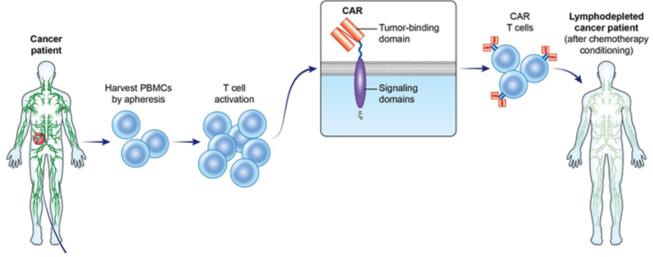


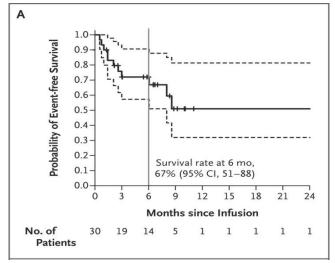
Blinatumumab in ALL

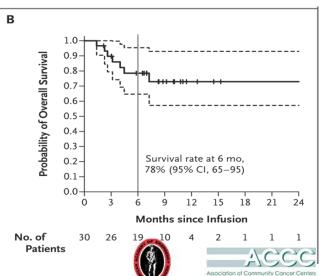


Topp, Max S et al., The Lancet Oncology , Volume 16 , Issue 1 , 57 - 66 $\,$

Blinatumumab in ALL


Blinatumumab in ALL


All patients	81/189	_ _	43% (36–50)
Sex			1300 (300 30)
Women	32/70		46% (34-58)
Men	49/119		41% (32-51)
Geographical region			
Europe	39/95		41% (31-52)
USA	42/94		45% (34-55)
Age group (years)			
18 to <35	39/90	-	43% (33-54)
35 to <55	21/46		46% (31-61)
55 to <65	10/28		36% (19-56)
≥65	11/25		44% (24-65)
Previous salvage therapy			
No previous salvage	19/38		50% (33-67)
1 previous salvage	36/77		47% (35-58)
2 previous salvage	15/42		36% (22-52)
>2 previous salvage	11/32		34% (19-53)
Disease state			
Previous HSCT	29/64	<u> </u>	45% (33-58)
No previous HSCT	52/125	<u> </u>	42% (33-51)
No previous HSCT, no previous salvage	12/29		41% (24-61)
No previous HSCT, 1 previous salvage	27/55		49% (35-63)
No previous HSCT, ≥2 previous salvage	13/41		32% (18-48)
Bone-marrow blasts			
<50%	43/59		73% (60-84)
≥50%	38/130		29% (22-38)
		 	



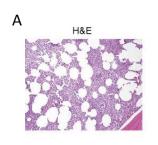
CD-19 CAR-T in ALL

Probability of Event-Free and Overall Survival at Six Months.

Antigen-specific Approaches in ALL

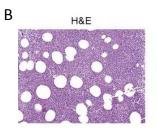
Technology:	CART	ADC	BiTE
Example	CART-19	Inotuzumab (anti-CD22 + toxin)	Blinatumumab (anti-CD3/CD19)
Dosing	One infusion	Every 3 weeks	Continuous 28 days
Complete Response	90%	19%	66%
Survival	78% 6 mos OS	5-6 months median	9 mos median
Major toxicity	Cytokine release	Hepatotoxicity	Cytokine release
Antigen loss relapse?	Yes	No	Yes
Challenges	Complex manufacturing, individualized	Lower response rates	Burdensome infusion

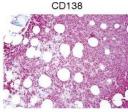
Myeloma





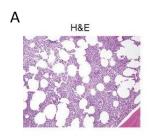
Case Study #2

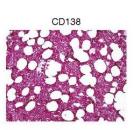

Two patients with multiply relapsed myeloma considering participation in a BCMA CAR-T cell trial.

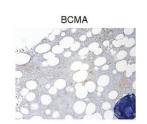




Enrollment BM biopsy shows the following staining

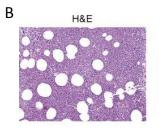


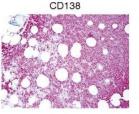


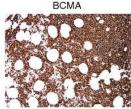


Case Study #2

Which of the following statements is true?




A.Pt A more likely to respond to BCMA CAR-T cell therapy


B.Pt B more likely to suffer from cytokine release syndrome (CRS) following BCMA CAR-T cell therapy

D.CRS is only seen in ALL

Combination Therapies

Pembrolizumab + Lenalidomide: Prior Therapies

	Pembro + Len + Dex N = 50
Prior therapies, median (range)	4 (1-5)
≥3 Lines of therapy, n (%)	36 (72)
Prior therapies, n, (%) Lenalidomide Bortezomib Pomalidomide Carfilzomib	48 (96) 48 (96) 13 (26) 11 (22)
Prior ASCT, n (%)	43 (86)

	Pembro + Len + Dex N = 50
Refractory to lenalidomide, n (%)* Double refractory Triple refractory Quadruple refractory	38 (76) 15 (30) 6 (12) 4 (8)
Refractory to bortezomib, n (%)	32 (64)
Refractory, last line, n (%)	40 (80)
Refractory to lenalidomide as last line, n (%)	10 (20)

^{*}Double refractory = Len/Bort/Pom or Len/Bort/Carf Quadruple refractory = Len/Bort/Pom/Carf

Combination Therapies

Pembrolizumab + Lenalidomide: Response Rates

N (%)	Total N = 17	Len Refractory* N = 9
Overall Response Rate	13 (76)	5 (56)
Very Good Partial Response	4 (24)	2 (22)
Partial Response	9 (53)	3 (33)
Disease Control Rate [†]	15 (88)	7 (78)
Stable Disease	3 (18)	3 (33)
Progressive Disease	1 (6)	1 (11)

^{*3} patients double refractory and 1 triple refractory (Len/Bor +Pom)
†Disease Control Rate = CR +VGPR + PR + SD >12 weeks.

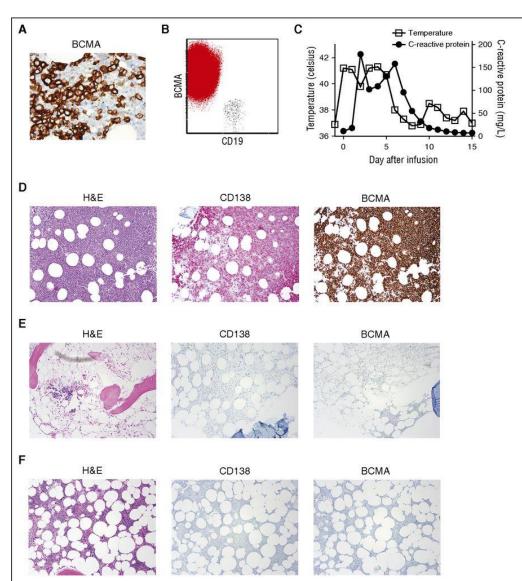
Baseline Patients' Demographics

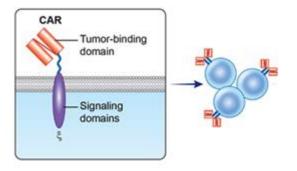
Characteristic	N=33
Age – yr Median (Range)	65 (42-81)
Sex – no. (%) Male Female	24 (73%) 9 (27%)
Race – no (%) Caucasians African Americans Others (Hispanic, Asian)	17 (52%) 13 (39%) 3 (9%)
Isotype – no.(%) IgG IgA Light chain	18 (55%) 7 (21%) 8 (24%)
LDH – Median (range)	415 (148- 4800)
Cytogenetics – no. (%) High risk [del 17p, t(4:14) and/or t(14:16)] del 13q 1q+	14 (42%) 16 (48%) 23 (70%)

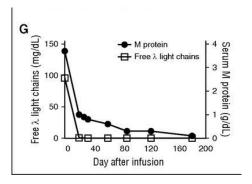
Best Response to Treatment (IMWG Criteria)

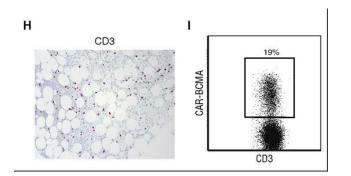
Evaluable Pts (n=27)

	All N=27	Double refractory N=20	High risk cytogenetics N=12
ORR (≥ PR), % sCR CR VGPR PR	1 0 4 11	6 0 0 2 9	0 0 1 5
Stable Disease	8 (30%)	6 (30%)	5 (42%)
Progressive disease	3 (10%)	3 (15%)	1 (8%)









Efficacy of BCMA CAR-T in Myeloma

Types of Vaccines Used in Myeloma

VACCINE

- Non-Antigen Specific
 - Attenuated measles
 - Whole cell GM-CSF
 - Dendritic tumor fusions

- Antigen Specific
 - Idiotype: RNA, DNA, protein
 - Pulsed dendritic cells
 - Tumor-specific peptides

Resources:

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis^{1†}, Michael R. Bishop^{2†}, Rafat Abonour³, Kenneth C. Anderson⁴, Stephen M. Ansell⁵, David Avigan⁶, Lisa Barbarotta⁷, Austin John Barrett⁸, Koen Van Besien⁹, P. Leif Bergsagel¹⁰, Ivan Borrello¹¹, Joshua Brody¹², Jill Brufsky¹³, Mitchell Cairo¹⁴, Ajai Chari¹², Adam Cohen¹⁵, Jorge Cortes¹⁶, Stephen J. Forman¹⁷, Jonathan W. Friedberg¹⁸, Ephraim J. Fuchs¹⁹, Steven D. Gore²⁰, Sundar Jagannath¹², Brad S. Kahl²¹, Justin Kline²², James N. Kochenderfer²³, Larry W. Kwak²⁴, Ronald Levy²⁵, Marcos de Lima²⁶, Mark R. Litzow²⁷, Anuj Mahindra²⁸, Jeffrey Miller²⁹, Nikhil C. Munshi³⁰, Robert Z. Orlowski³¹, John M. Pagel³², David L. Porter³³, Stephen J. Russell⁵, Karl Schwartz³⁴, Margaret A. Shipp³⁵, David Siegel³⁶, Richard M. Stone⁴, Martin S. Tallman³⁷, John M. Timmerman³⁸, Frits Van Rhee³⁹, Edmund K. Waller⁴⁰, Ann Welsh⁴¹, Michael Werner⁴², Peter H. Wiernik⁴³ and Madhav V. Dhodapkar^{44*}

