

Immunotherapy for the Treatment of Genitourinary Malignancies

Arash Rezazadeh M.D.

Research Program Director, Urologic Oncology

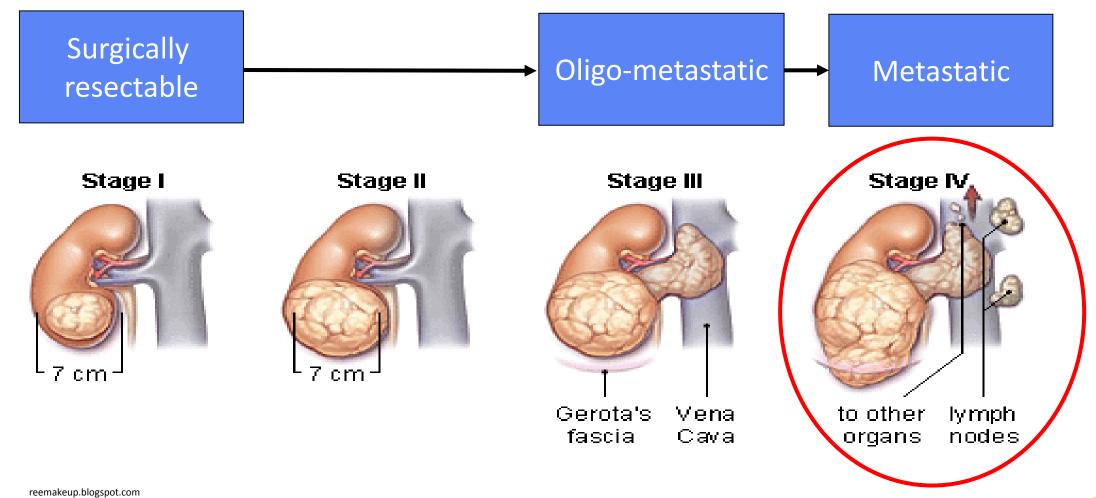
Norton Cancer Institute

Society for Immunotherapy of Cancer

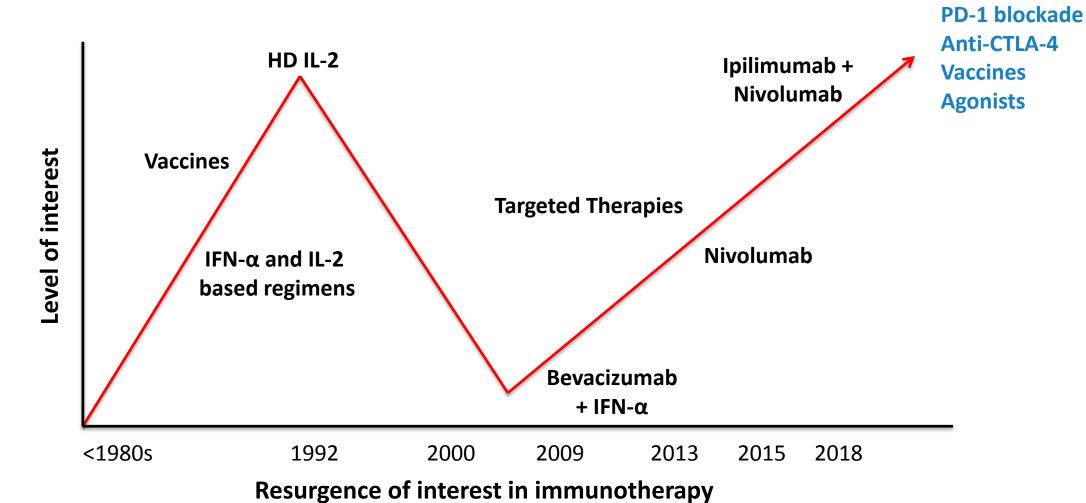
sitc

Disclosures

- Consulting Fees
 - Genentech, BMS
- Other (speaker)
 - BMS, Sanofi, Janssen, AstraZeneca, Novartis, Pfizer, Amgen, Exelixis
- I will be discussing non-FDA approved indications during my presentation.



Immunotherapy for Metastatic Kidney Cancer (Renal Cell Carcinoma; RCC)

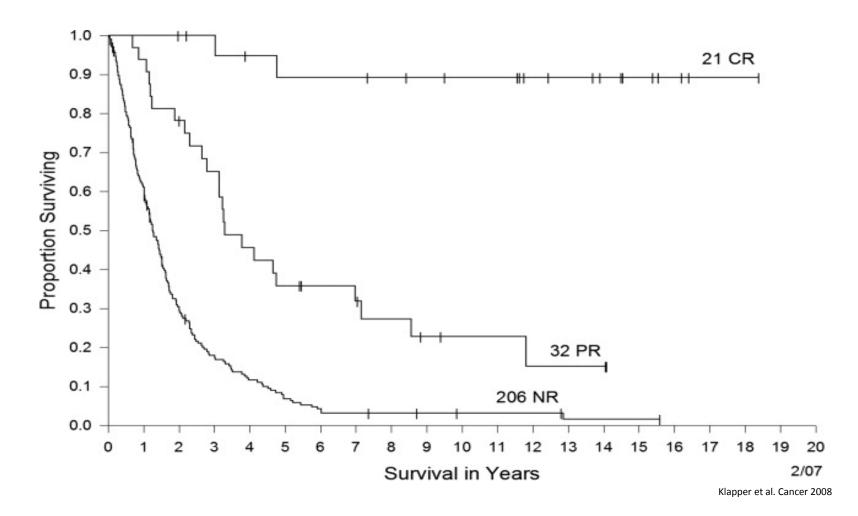


History of Immunotherapy in mRCC

FDA-approved Immunotherapies for mRCC

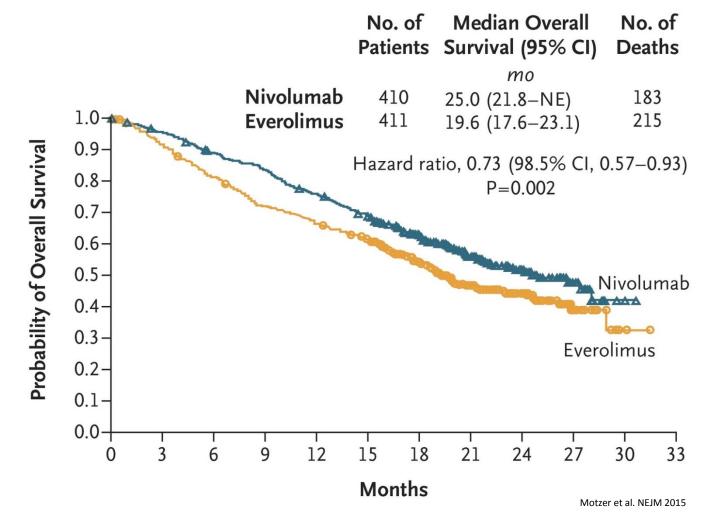
Drug	Approved	Indication	Dose
High dose Interluekin-2	1992	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)*
Interferon-a (with bevacizumab)	2009	Clear cell RCC***	9 MIU s.c. three times a week
Nivolumab	2015	Clear cell RCC Refractory to prior VEGF Targeted therapy	3mg/kg 240mg IV q 2 week or 480mg IV q 4 wks
Nivolumab +ipilimumab	2018	Clear cell RCC, treatement naïve	3mg/kg nivo plus 1mg/kg ipi q3 wks x 4 doses then nivo maintenance at flat dosing

^{*}Retreatment: Evaluate after 4 weeks, advisable only if tumor shrinkage and no retreatment contraindications (see package insert for details)



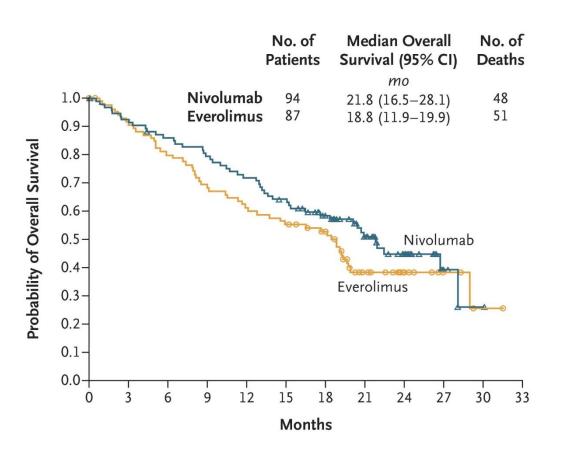
High Dose IL-2 in mRCC

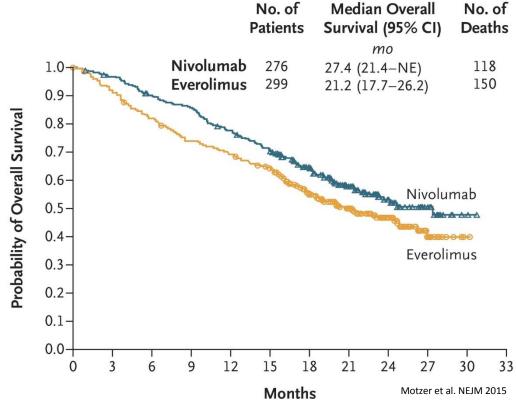
- 20 year analysis of 259 patients
- ORR = 20%
 - 9% CR (n = 23)
 - 12% PR (n = 30)
- Median duration of response = 15.5 months
- Median OS = 19 months



Second-Line Nivolumab in mRCC

- CheckMate 025 Phase III trial
- Nivolumab = anti-PD-1 antibody
- Metastatic, clear-cell disease
- One or two previous antiangiogenic treatments
- Nivolumab (3 mg/kg IV Q2W) vs everolimus (10 mg daily)




Second-Line Nivolumab in mRCC

PD-L1 subgroups

PD-L1 ≥ 1%

PD-L1 < 1%

First-line Nivolumab + Ipilimumab in mRCC

Patients

- Treatment-naïve
 advanced or
 metastatic clear-cell
 RCC
- Measurable disease
- KPS ≥70%
- Tumor tissue available for PD-L1 testing

Randomize 1:1

Stratified by

- IMDC prognostic score (0 vs 1–2 vs 3–6)
- Region (US vs Canada/Europe vs Rest of World)

Treatment

Arm A

3 mg/kg nivolumab IV + 1 mg/kg ipilimumab IV Q3W for four doses, then 3 mg/kg nivolumab IV Q2W

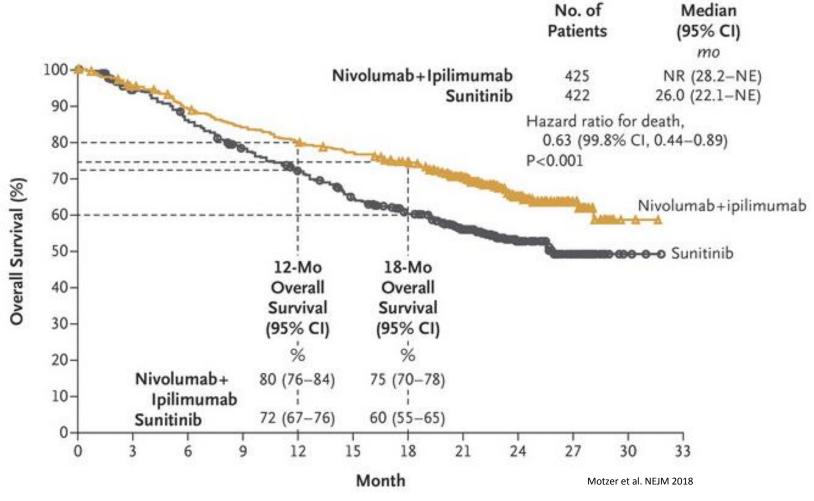
Arm B
50 mg sunitinib orally once
daily for 4 weeks
(6-week cycles)

Escudier et al. ESMO 2017

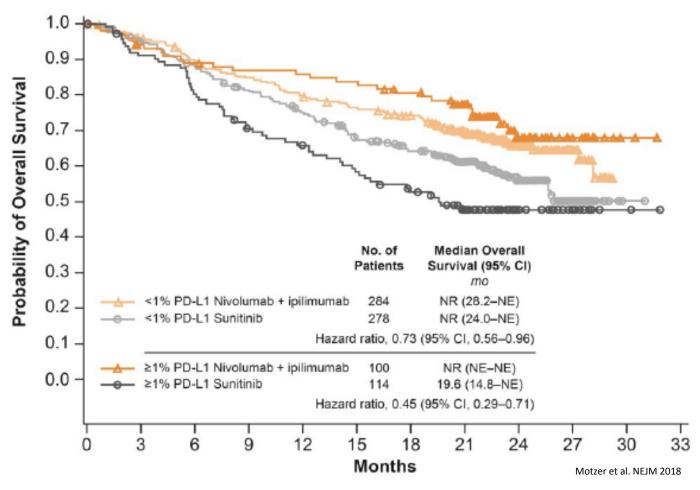
Treatment until progression or unacceptable toxicity

Nivolumab = anti-PD-1 antibody

Ipilimumab = anti-CTLA-4 antibody

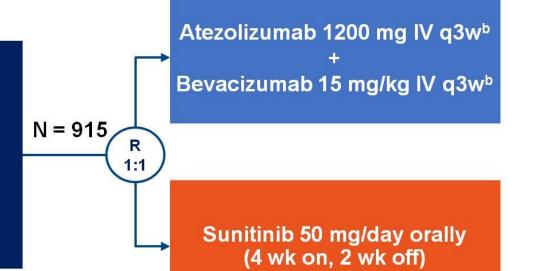


First-line Nivolumab + Ipilimumab in mRCC



First-line Nivolumab + Ipilimumab in mRCC

PD-L1 Subgroups


In Development: First-line Atezolizumab + Bevacizumab in PD-L1+ mRCC

Key Eligibility:

- Treatment-naive advanced or metastatic RCC
- Clear cell and/or sarcomatoid histology
- KPS ≥ 70
- Tumor tissue available for PD-L1 staining

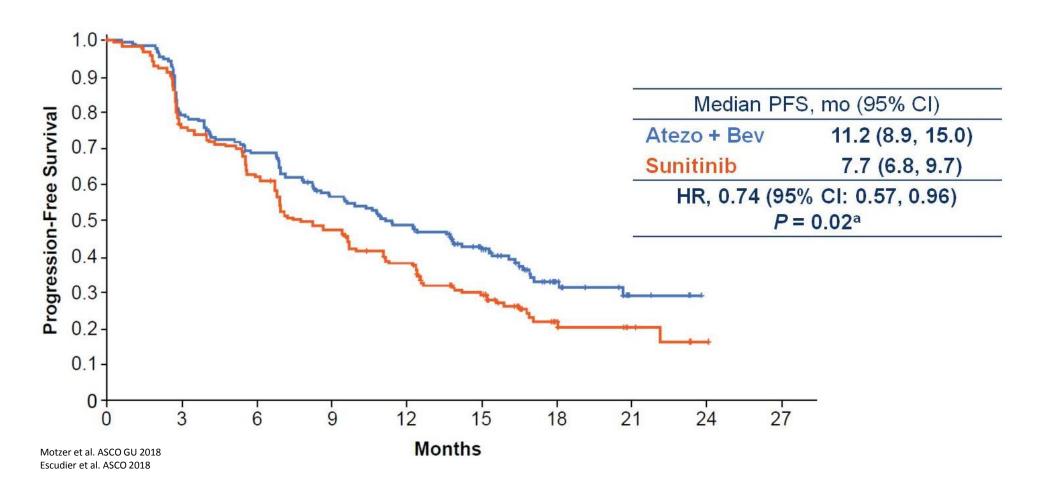
Stratification:

- MSKCC risk score
- Liver metastases
- •PD-L1 IC IHC status (< 1% vs ≥ 1%)^a

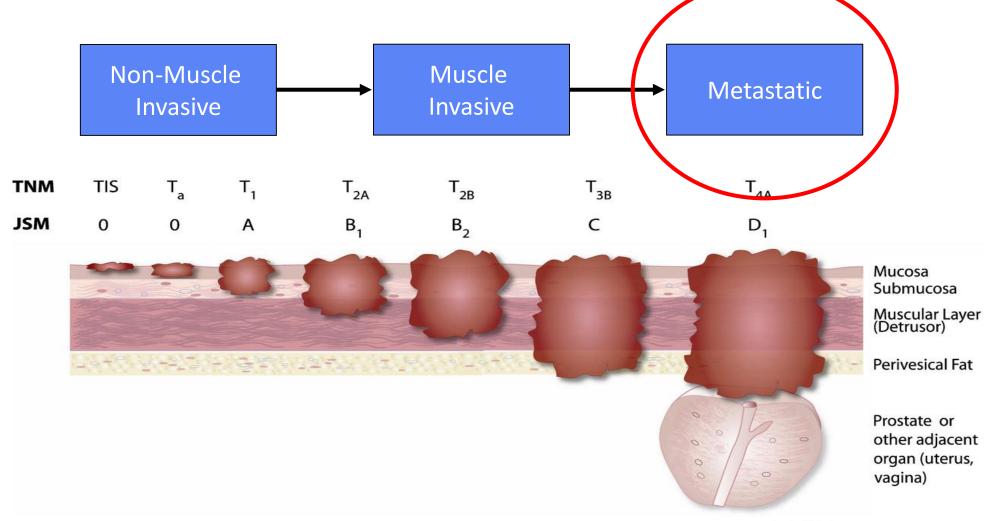
Motzer et al. ASCO GU 2018

Atezolizumab = anti-PD-L1 antibody

bevacizumab = anti-VEGF antibody



In Development: First-line Atezolizumab + Bevacizumab in PD-L1+ mRCC



Immunotherapy for Metastatic Bladder Cancer (Urothelial Carcinoma; UC)

Approved Checkpoint Inhibitors for mUC Cisplatin Refractory

Drug/Trial name	Phase	No. of patients	ORR	PFS	os	Duration of response	Grade 3/4 AE (treatment related deaths)	Maximal duration of treatment
CISPLATIN REFRA	ACTORY							
Atezolizumab IMvigor210 cohort 2	II	310	16% (6% CR)	2.1 mo	7.9 mo (1yr 29%)	22.1 mo	18% (0 deaths)	NR
Atezolizumab IMvigor211	III	931	13%	NR	8.6 mo	21.7 mo	20%	NR
Pembrolizumab KEYNOTE-045	III	542	21%	2.1 mo	10.3 mo	NR	14% (4 deaths)	2 years
Nivolumab CheckMate275	II	265	19.6% (2% CR)	2 mo	8.7 mo	NR	18% (3 deaths)	NR
Avelumab JAVELIN	lb	242	17% (6% CR)	6.6 weeks	6.5 mo	NR	10% (1 death)	NR
Durvalumab	1/11	191	17.8% (4% CR)	1.5 mo	18.2 mo	NR	7% (2 deaths)	1 year

Anti-PD-L1 Antibodies

- 1) Atezolizumab
- 2) Avelumab
- 3) Durvalumab

Anti-PD-1 Antibodies

- 1) Nivolumab
- 2) Pembrolizumab

In development: Combinations

- 1) IO + IO
- 2) IO + Chemotherapy

Approved Checkpoint Inhibitors for mUC Cisplatin Ineligible

CISPLATIN INELIGIBLE								
Atezolizumab	II	119	23%	2.7	15.9	NR	16% (1 death)	NR
IMvigor210			(9%	mo	mo,			
cohort 1			CR)		1yr			
					57%			
Pembrolizumab	П	370	29%	6mo	6	NR	19% (1 death)	2 years
KEYNOTE-052			(7%	30%	mo			
			CR)		67%			

Anti-PD-L1 Antibodies

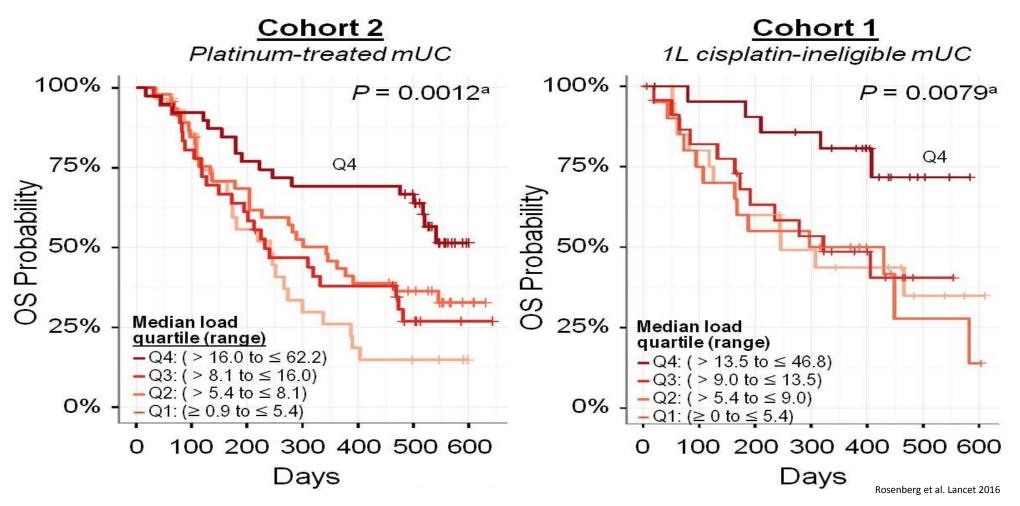
- 1) Atezolizumab
 - PD-L1 stained tumorinfiltrating immune cells [IC] covering ≥5% of the tumor area

Anti-PD-1 Antibodies

- 1) Pembrolizumab
 - PD-L1 CPS ≥ 10

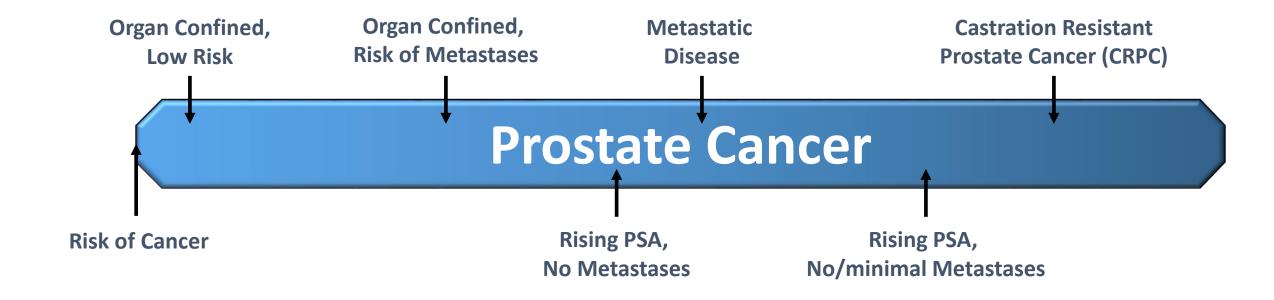
In development: Combinations

- 1) IO + IO
- 2) IO + Chemotherapy

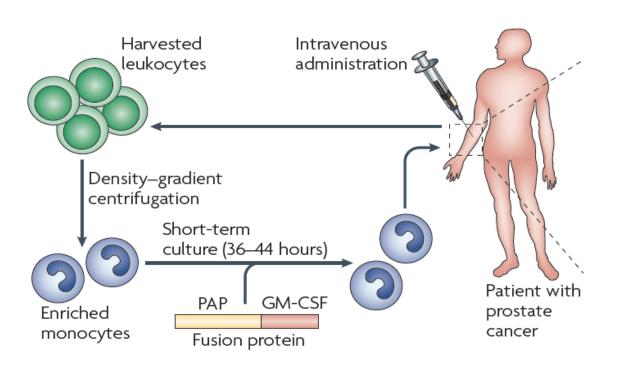


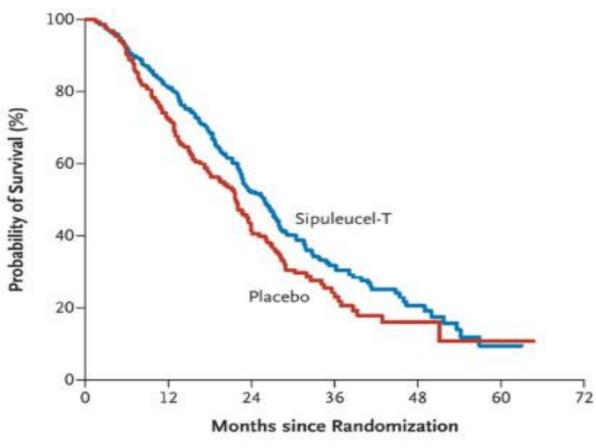
Tumor Mutational Burden (TMB) May Signal Responses with PD-1 Blockade

Atezolizumab in mUC



The Spectrum of Prostate Cancer

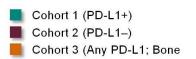


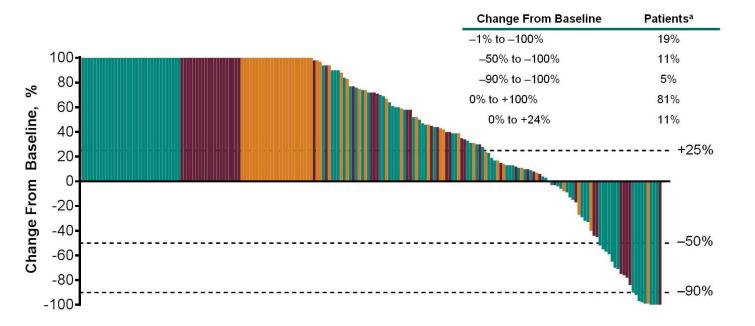


Sipuleucel-T in mCRPC

- First anticancer therapeutic vaccine

Kantoff et al. NEJM 2010


Drake et al. Curr Opin Urol 2010

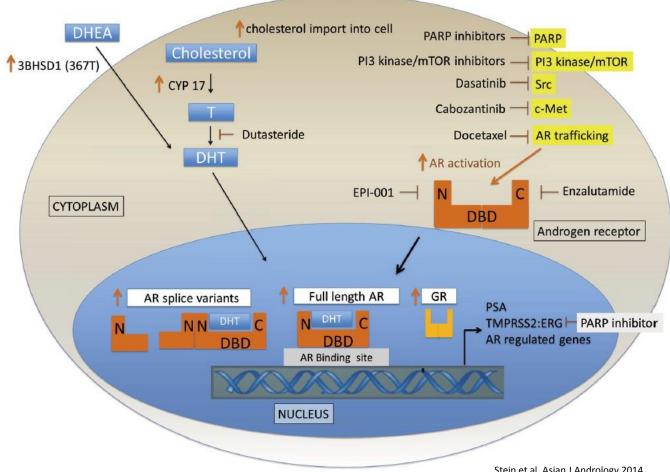


Limited efficacy of Checkpoint Inhibitors in mCRPC

No FDA-approved CIs for mCRPC

Ex. – KEYNOTE-199 (Pembrolizumab)

- Pembrolizumab is approved for all Microsatellite Instability-High (MSI-H) solid tumors
- MSI-H incidence is low in PC
 - Localized PC ~2%
 - Autopsy series of mCRPC ~12%
- MSI testing may offer pembrolizumab as an option



DeBono et al. ASCO 2018

Future Combinations in mCRPC to Engage Immune System

- Hormonal therapy
- Radiation
- Radium-223
- PARP inhibitors
- Chemotherapy
- New targets

Stein et al. Asian J Andrology 2014

irAEs with Immune Checkpoint Inhibitors in GU Cancers

Meta-analysis of 8 studies

- Similar incidence overall

Adverse event	Incidence, any grade (GU only trials) (%)	Incidence, grades 3– 5 (GU only trials) (%)	Incidence any grade (non-GU clinical trials) (%)	Incidence, grades 3– 5 (non-GU clinical trials) (%)
Hypothyroid/ thyroiditis	0.8–9	0–0.6	3.9–12	0-0.1
Diabetes/DKA	0–1.5	0-0.7	0.8-0.8	0.4-0.7
LFT changes/ hepatitis	1.5-5.4	1–3.8	0.3–3.4	0.3–2.7
Pneumonitis	2-4.4	0–2	1.8-3.5	0.25-1.9
Encephalitis	NR	NR	0.2-0.8	0.0-0.2
Colitis/diarrhea	1–10	1–10	2.4–4.1	1.0-2.5
Hypophysitis	0–0.5	0-0.2	0.2-0.9	0.2-0.4
Renal Dysfunction/ nephritis	0.3–1.6	0–1.6	0.3–4.9	0.0-0.5
Myositis	0.8–5	0-0.8	NR	NR

Maughan et al. Front Oncol 2017

Immune-related Adverse Events

Table 2 General guidance for corticosteroid management of immune-related adverse events

Grade of immune-related AE (CTCAE/equivalent)	Corticosteroid management	Additional notes
1	Corticosteroids not usually indicated	Continue immunotherapy
2	 If indicated, start oral prednisone 0.5-1 mg/kg/day if patient can take oral medication. If IV required, start methylprednisolone 0.5-1 mg/kg/day IV If no improvement in 2–3 days, increase corticosteroid dose to 2 mg/kg/day Once improved to ≤grade 1 AE, start 4–6 week steroid taper 	 Hold immunotherapy during corticosteroid use Continue immunotherapy once resolved to ≤grade 1 and off corticosteroids Start proton pump inhibitor for GI prophylaxis
3	 Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) If no improvement in 2–3 days, add additional/alternative immune suppressant Once improved to ≤ grade 1, start 4–6-week steroid taper Provide supportive treatment as needed 	 Hold immunotherapy; if symptoms do not improve in 4–6 weeks, discontinue immunotherapy Consider intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)
4	 Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) If no improvement in 2–3 days, add additional/alternative immune suppressant, e.g., infliximab Provide supportive care as needed 	 Discontinue immunotherapy Continue intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)
	, ,	immunosuppression expected (>30 m

Puzanov Journal for ImmunoTherapy of Cancer 2017

Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer (2016) 4:81 DOI 10.1186/s40425-016-0180-7

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma

Brian I. Rini¹, David F. McDermott², Hans Hammers³, William Bro⁴, Ronald M. Bukowski⁵, Bernard Faba⁶, Jo Faba⁶, Robert A. Figlin⁷, Thomas Hutson⁸, Eric Jonasch⁹, Richard W. Joseph¹⁰, Bradley C. Leibovich¹¹, Thomas Olencki¹², Allan J. Pantuck¹³, David I. Quinn¹⁴, Virginia Seery², Martin H. Voss¹⁵, Christopher G. Wood⁹, Laura S. Wood¹ and Michael B. Atkins^{16*}

Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 DOI 10.1186/s40425-017-0271-0

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew I. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Eila C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor III¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷

McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Case Study 1

Incidental finding of mass in left kidney during MRI of L-Spine 2011

Left partial nephrectomy in Sep 2018

pT1a -6.6 x 5.2 x 3.8 cm, papillary RCC with minor foci of clear cell changes G2, margins focally close, but clear

Pt goes on Surveillance

11/19/14, 2 metastatic lesions, 4 cm in left psoas muscle and 2.3 cm 12th rib (Bx proven)

Metastasectomy was attempted

3/2/16 Ct scan; nodular area between 11 and 12th rib and isodense mass within psoas muscle

5/5/2016:started pazopanib with poor tolerance

5/26/2016: MRI abdomen : enlarging metastatic disease in left psoas muscle

7/8/16 :Started sunitinib, with expected side effects

9/7/16 CT CAP: Retroperitoneal mass or masses on the left inseparable from the psoas and paraspinal musculature,

posterior pararenal fat, and extending across the flank musculature

10/19/2016: attempted metastasectomy, left radical nephrectomy and periotic lymphadenopathy.

Pathology: Recurrent RCC. Tumor 8.0 x 3.0 x 2.6 cm with positive margin

12/14/16: MRI abdomen There are 3 separate areas of enhancing tissue

1/14/2017: XRT completed

Restaging Scans after XRT

6.9 x 3.2 x 7.0 cm Left posterior lateral abdominal mass

1/13/2017 started Nivolumab

2/24/17 CT CAP: Stable disease

Completed 7 cycles through 4/10/2017

Admitted to hospital 4/17/17 - 5/8/17
Presented to ER with BLE weakness, fall, inability to walk and generalized fatigue
Became encephalopathic and was intubated
Developed Hypothermia

Diagnosis: Acute chemical encephalopathy secondary to nivolumab

LP unremarkable for infection but with lymphocytes Stared on high dose steroids, methylprednisolone 1000 mg QD until extubated

5/12/17: <u>CT CAP</u> Interval marked decrease in size of the soft tissue mass at the left retroperitoneum and paraspinal muscles, now no longer clearly involving the left psoas muscle. The soft tissue mass at the left flank along the surgical tract was also markedly decreased in size.

5/24/2017: Completed steroid

Patient remained off any active therapy for RCC

9/17/2018: No imaging evidence of a locally recurrent or metastatic renal cell cancer

Case study 2

Incidental finding of renal mass during work up for chest pain

6/23/18: CT AP right 10cm renal mass, 1.2 cm regional lymphadenopathy, multiple non-calcified pulmonary nodules and subcarinal node

7/18/2018: right radical nephrectomy

Clear cell renal cell carcinoma with focal rhabdoid differentiation (1%) with minute focus of mestatic clear cell RCC LNs

pT3aN1

9/7/2018 : cycle #1 nivolumab and ipilimumab

9/18/18 to 9/24/18 admitted with DKA and AKI,No prior h/o DM Undetectable C peptide K 7.1; BUN/Cr 51/3.9 and blood glucose 1306. Treated with insulin gtts and DKA protocol

8/25/2018: CT CAP, bilateral non calcified pulmonary nodules, overall the size of the majority of the nodules are only slightly increased in size compared to the prior study

10/24/23018: CT CAP, slight enlargement of pulmonary nodules size and mediastinal adenopathy since the previous exam

Infrequent and unusual presentation for side effects of Immunotherapy THERE IS ALWAYS A FIRST TIME

Steroids and immunosuppressants are important but some of the endocrinopathties can be treated with replacement therapy

Can we re- chalange some of the patients with sever side effects with immunotherapy

Is there an increased chance of response with sever side effects

What is the optimal duration of immunotherapy

What is Pseudo-progression with immunotherapy

