Dendritic cells and antigen presentation

Karolina Palucka, MD, PhD

The Jackson Laboratory for Genomics Medicine Farmington, CT

SITC Primer November 2017

No relevant disclosures

Myeloid cells organize tumor microenvironments

Dendritic cells link
the innate and
adaptive immunity
Tissue-resident DC

Dendritic cells: Ralph
M. Steinman, MD
2011 Nobel Prize in
Medicine or
Physiology

Features of dendritic cells critical for priming of immune responses

Antigen uptake receptors and processing pathways for presentation of peptide-MHC complexes

Location at body surfaces and in the T-cell

areas of lymphoid organs

Maturation or differentiation in response to microbial and other stimuli

> Subsets with distinct pattern recognition receptors and functions

Steinman & Banchereau
Nature 2007

Dendritic cells are professional antigen presenting cells that launch CD4 T cell immunity

Internalization of antigen into APC

Antigen processing

Processing generates multiple peptides, one of which can bind to class II allele T cells respond to immunodominant peptide epitope

Abbas et al: Cellular and Molecular Immunology, 7e. Copyright © 2012, 2007, 2005, 2003, 2000, 1997, 1994, 1991 by Saunders, an imprint of Elsevier Inc.

Dendritic cells are professional antigen presenting cells that launch CD8 T cell immunity to antigens from other cells: cross-presentation

Abbas et al: Cellular and Molecular Immunology, 7e.
Copyright © 2012, 2007, 2005, 2003, 2000, 1997, 1994, 1991 by Saunders, an imprint of Elsevier Inc.

Why it is important to be professional: The fate of antigen in tissue

Why it is important to be professional?

DC maturation as checkpoint of cellular immunity

Microbial Products/Adjuvants:

TLR, NOD and lectin ligands

LPS, DNA, RNA

Tissue damage: Uric acid, HSPs

Cells of innate immunity pDC, NK, NK T, Neutrophils IFN, TNF, GM-CSF Cells of adaptive immunity

Immature DC

Mature DC

T and B cells

CD40 L, RANK

Mature dendritic cells subvert T cells in breast cancers

J. Exp. Med. © The Rockefeller University Press Volume 190, Number 10, November 15, 1999 http://www.jem.org

Breast cancer subverts dendritic cell maturation to induce Th2 cells promoting cancer progression

The Human DC Compartment 2013

	pDC	BDCA1+ (CD1c)+	BDCA3+ (CD141)+	LC	CD14+	CD1a+
Phenotype:	Lin- HLA-DR+ CD11c ^{low} CD1a- CD123 ^{hi} BDCA2+ BDCA4+	Lin- HLA-DR+ CD11c+ CD1a- BDCA1+ BDCA3+/- CD11b ^{low}	Lin- HLA-DR+ CD11c+ CD1a- BDCA1- BDCA3+ CD11b ^{low} CD141+ Necl2+ Xcr1+ Clec9a+ Dec205hi	Lin- HLA-DR+ CD11c+ CD1a+ CD14- BDCA1+ Langerin+ EpCAM+ Sirpa+ CD11b+/- E-cadherin+	Lin- HLA-DR+ CD11c+ CD1a- CD14+ BDCA1+ Langerin- EpCAM- DC-SIGN+ FXIIIa- CD163-	Lin- HLA-DR+ CD11c+ CD1a+ CD14- BDCA1+ Langerin- EpCAM- Sirpa+ CD11bhi
PRRs:	TLR1+, TLR2-, TLR3-, TLR4-, TLR6+, TLR7+, TLR8-, TLR9+	ND	TLR1+, TLR2+, TLR3+, TLR4-, TLR6+, TLR7-, TLR8+, TLR9-	TLR1+, TLR2+, TLR3 ^{lo} , TLR4-, TLR6+, TLR7-, TLR8-, TLR9-	ND	ND
Murine equivalent:	pDC	cDC	CD8+ cDC	LC	ND	Dermal DC
Location:				Epidermis	Der	mis
	Blood and lymphoid tissue			Cutaneous tissue		

The Human Blood DC Compartment in 2017

Distinct Human Dendritic Cell Subsets regulate different arms of immune responses

Caux et al, 1996,1997,1998

Langerhans Cells are More Efficient than CD14+ Dermal-DCs in CD8+T Cell Priming

Distinct DC subsets elicit distinct immune responses

Klechevsky, Ueno et al Immunity 2008

Distinct DC subsets elicit different CD8+ T cells

memory CD8+ T cells

Yu, Immunity, 2013

Klechevsky, Ueno, Immunity, 2008

Caux et al, 1996,1997,1998

Molecular mechanisms underlying functional specialization of human DC subsets

Constitutive resistance to viral infection in human CD141⁺ dendritic cells

Multiple monocyte-derived DCs

Aryl hydrocarbon receptor controls monocyte differentiation to DCs

Christel Goudot, Alice Coillard, Alexandra-Chloé Villani, Paul Gueguen, Adeline Cros, Siranush Sarkizova, Tsing-Lee Tang-Huau, Mylène Bohec, Sylvain Baulande, Nir Hacohen, Sebastian Amigorena, Elodie Segura

Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages

null, Volume 47, Issue 3, 2017, 582–596.e6 http://dx.doi.org/10.1016/j.immuni.2017.08.016

Chemotherapy and targeted therapy meet immunology

Dendritic cells in cancer therapy

Communication between tumor and lymph nodes

From: Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy Ann Oncol. Published online September 01, 2017. doi:10.1093/annonc/mdx237 Ann Oncol | © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

From: Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy Ann Oncol. Published online September 01, 2017. doi:10.1093/annonc/mdx237 Ann Oncol | © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

SnapShot: Cancer Vaccines

Karolina Palucka¹ and Jacques Banchereau²

¹Ralph M. Steinman Center for Cancer Vaccines, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA

²The Jackson Laboratory, Farmington, CT 06030, USA

Emerging strategies for DC targeting in clinical trials

To cite this article: Madhav V Dhodapkar & Kavita M Dhodapkar (2014) Recent advances and new opportunities for targeting human dendritic cells in situ, Oncolmmunology, 3:8, e954832, DOI: 10.4161/21624011.2014.954832

Specific CD8+ T cell expansion via CD40 targeting in humanized Mice

Graham et al., Vaccine 2016

CD40 targeting antibody deliver antigens to both subsets of DCs in humanized Mice

No. of DCs per 100K CD8 T cells

In vitro FluM1-loaded control

Graham et al., Vaccine 2016

Diversity and collaboration for effective immunotherapy

Palucka & Banchereau, Nat Med 2016; Moynihan, K.D. et al. Nat. Med. 22, 1402–1410 (2016).

Thanks to our patients Thanks to funding organizations

Chun Yu

Florentina Marches

Jan Martinek

Te-Chia Wu

Patrick Metang

John Graham

Pierre Authie

Clinical collaborators

Jacques Banchereau

Question 1

Which cells in tissue are professional antigen presenting cells?

- a. Macrophages
- b. B cells
- c. Dendritic cells
- d. Epithelial cells

Question 2

Which features are the most critical for DC ability to prime T cells?

- a. Antigen presentation
- b. Localization in the lymph node
- c. Maturation
- d. DC subsets
- e. All of the above

