Careers In Industry

Ginna Laport, MD
Chief Medical Officer
Tempest Therapeutics
San Francisco, CA

Outline

My journey

Reasons to choose industry

Industry vs academia

What does one "do" in industry

Biotech vs big pharma

Observations/Lessons

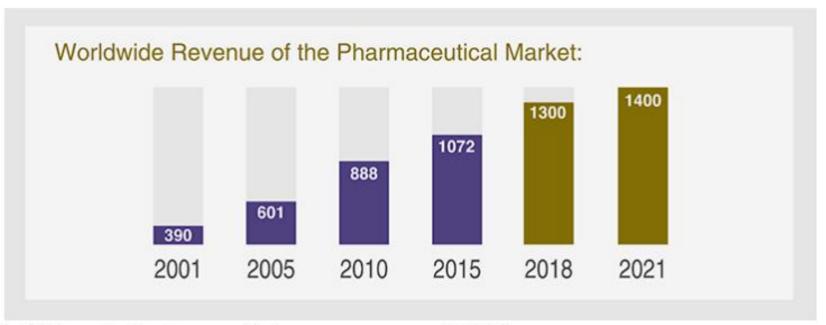
My journey

- Philippines \rightarrow NY \rightarrow Texas
- Baylor University
- University of Texas Medical School
- Univ of Chicago (Int Med residency, Heme/Onc fellowship)
- Univ of Pennsylvania (faculty)
- Stanford (faculty)
- Corvus Pharmaceuticals (VP, Clin Development)
- Tempest Therapeutics (Chief Medical Officer)

Why did I leave academia

- I had accomplished what I wanted to accomplish
- I was restless
- I wanted more of a leadership role
- I didn't want to move
- A great opportunity landed in my lap

Just because you are good at something doesn't mean you have to do it


Do what excites or fulfills you

There are multiple ways to be a physician or a scientist

- What do you want?
- Keep an open mind for opportunities that might land in your lap

Reasons to choose a career in pharma

Industry continues to grow

In 2016, worldwide pharmaceutical revenues were over \$1.1 trillion.

Reasons to Choose a Career in Pharma

Less affected by cyclical ups and downs

Pharmaceutical Industry R&D Investment

5x higher than aerospace and defense

4.5x higher than chemicals industry

2.5x higher than software and computer industry

- Offers rich opportunities for growth/upward trajectory
- Ability to leverage previous work experience

Why consider a career in industry?

- Make a difference on a macro level
- You can be a part of bring science to the clinic
 - Dont have to secure grant support or generate salary by other means
- You will publish
- Interaction with physicians/scientists around the world
- Interact with health authorities around the world
- Interact with smart colleagues
- Job changing less cumbersome/faster
- It is a noble cause and is not the "DARK SIDE"

Industry and academia have common goals

- Conduct groundbreaking research
- Improve quality of life
- Improve survival
- Cure cancer
- Both are noble causes
- Exception: revenue/profit

Industry and academia have different deliverables

Academia

- Research and PUBLISH, PUBLISH, PUBLISH
- Direct patient care
- Education (grad and med students, residents, fellows, etc)
- Research and PUBLISH, PUBLISH, PUBLISH
- Write grants

Industry is Drug Development

- Research AND development
- Identify a target → develop a new molecule → conduct preclinical studies → conduct clinical studies → bring it across the "finish line"

Challenges

- Drug development is highly regulated and publicly scrutinized
 - SOPs, SOPs, SOPs....
 - Much more documentation
- Need to learn to manage up and down
- The bottom line is a business bottom line
 - Doing what is right for patients is best business model BUT.....decisions not always straight forward and depends on decision maker

Drug development:

from birth to patient to market

Phase 1 Checking for Safety Phase 2
Checking for Efficacy

Phase 3 Confirm results

FDA Review / Phase 4 trials

20-100 volunteers

1st state of testing

in humans

100 - 500 patients

How well does

the drug work?

1,000 – 5,000 patients

- Drug MUST be safe

 Comparison with current 'gold standard' treatment

Safety surveillance in

'Real-life' patients

What does one "do" in Industry?

Broad spectrum of roles (R&D vs clinical)

- Scientist (Chemistry, Biology, Engineering)
- Physician (Clin trials, biomarkers, drug safety)

Pipeline work (Early stage)

- Partner with scientist to prioritize key targets
- Work with translational researchers to better understand biology; help select predict prognostic biomarkers
- Take new molecules thru IND, Phase 1 stage (FIH)

What does one "do" in Industry?

Design and implement clinical trials

- Collaborative effort with Biostats, Regulatory, data management and Clin Operations
- Appreciate costs of conducting trials, timelines, regulations, manufacturing implications

Late stage development

- Conduct "pivotal" trials
- Typically, phase 3 trial that will lead to registration/approval

Big pharma

Pros

- More resources
- More support
- Stability
- Establish credibility
- One trial failure has less impact

Cons

- Bureaucracy (meetings and more meetings)
- Silos
- More politics

Start up biotech

Pros

- Wear multiple hats
- Learn many functions
- Nimble
- Build something from scratch
- Larger voice
- Potential for large financial reward

Cons

- RISK
- Less resources
- Shorter runway

My observations

- Accountability
- The team vs the individual
- More process driven...lots of SOPs
- Exercise different "muscles"
- Different tools are needed to succeed and thrive

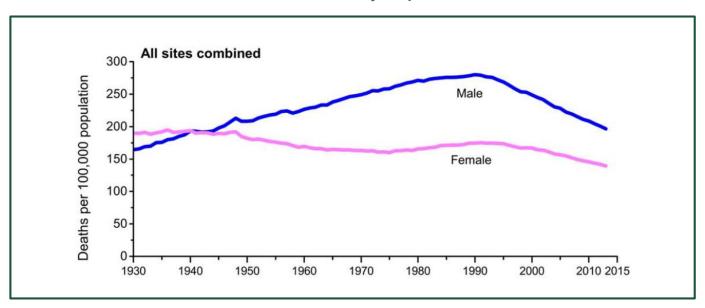
Some of my biggest changes

- No longer knew what was around every corner
- Gave up status as an expert in my field
- It was/is a steep learning curve
- No patient care
- I don't have to work holidays or weekends anymore

Tips for your current and future career

- With any job decision, there should be more of a
 PULL rather than a push
- The perfect job does not exist
- Your first job is rarely your last job
- It is a small world

All told...


- Working in drug development is highly rewarding
 - The environment can be academic
 - You can be an integral part of bringing new drugs to the clinic
 - There can be tremendous financial rewards
- We are all capable of reinventing ourselves
- Industry is not going anywhere
- We all have the same goal

This is why we do what we do...

Facts & Figures 2018: Rate of Deaths From Cancer Continues Decline

Cancer mortality drops another 1.7%

