Oncolytic Virus Therapy in Cancer Immunotherapy

Robert H. I. Andtbacka M.D., C.M, FACS, FRCSC Associate Professor of Surgery Huntsman Cancer Institute University of Utah

Disclosures

- Travel support from:
 - Amgen
 - Viralytics
- Advisory Board:
 - Amgen: T-VEC
- Investigator:
 - Amgen:
 - Viralytics:
- OPTiM and other T-VEC trials CALM trial

Objectives

- Discuss effect of viruses on cancer genesis and treatment
- Discuss how oncolytic viruses are used in metastatic melanoma
- Discuss future roles of oncolytic virus therapy in cancer immunotherapy

Viruses causing cancer

Major viral infectious agents that trigger cancer					
Mechanism	Virus	Cancer			
Infect and transform lymphoid cells	Epstein–Barr virus (EBV)	Burkitt's lymphoma			
	Human Herpesvirus 8 (HHV8)	Kaposis sarcoma			
	Human T-lymphotropic virus 1 (HTLV-1)	T-cell leukemia			
Transformation	Human papilloma virus (HPV)	Cervical cancer			
		HPV+ ano-genital cancers			
		HPV+ head-neck cancers			
Inflammation / partial integration	Hepatitis B virus (HBV)	Hepatocellular carcinoma			
Chronic inflammation / ongogenic proteins	Hepatitis C virus (HCV)	Hepatocellular carcinoma			
Chronic stimulation of lymphocytes by pathogen antigens and/or autoantigens	Hepatitis C virus (HCV)	Spleen lymphoma			
Immunosuppression	HIV	EBV+ CNS lymphomas			
		HHV8+ sarcoma (Kaposi)			
		HPV+ ano-genital cancers			

Rook et al. Immunol Rev 2011, 240: 141-159

Viruses can also elicit an antitumor response

100 Years Ago

1940s-1950s

1970s-Present

- Women with cervical cancer experience short-term remission of cancer after administration of rabies vaccine¹
- Patients with cancers experience clinical remission after viral infection^{2,3}
- Inoculation of patients with cancer with crude viral preparations³
- Purified mumps virus induced tumor regression or decreased tumor size in patients with cancer⁴

Nuwer R. *New York Times*. March 19, 2012.
 Bierman HR, et al. *Cancer*. 1953;6:591-605.
 Kelly E, et al. *Mol Ther*. 2007;15:651-659
 Asada T. *Cancer*. 1974;34:1907-1928

Lessons learned from viral infections in cancer

- Although the potential for use of wild-type viruses/vaccines was observed historically, limitations were recognized, including:
 - Lack of tumor selectivity¹
 - Limited potency in tumor cells¹
 - Weakened antitumor immune response¹
 - Limited accessibility to the tumor²⁻⁴
 - May cause human disease⁵

• These limit the potential for wild-type viruses/vaccines to be viable treatment options for cancer

Everts B. Cancer Gene Ther. 2005;12:141-161.
 Pol JG, et al. Virus Adapt Treat. 2012;4:1-21.

3. Kim J-H, et al. J Natl Cancer Inst. 2006;98:1482-1493

4. Guedan S, et al. *Mol Ther*. 2010;18:1275-1283. 5. Hoster HA, et al. *Cancer Res*. 1949;9:473-480.

Viruses can also elicit an antitumor response

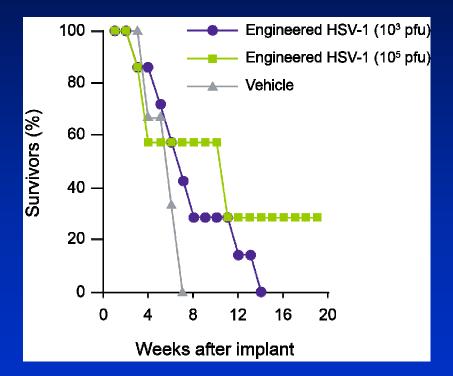
100 Years Ago

1940s-1950s

1970s-Present

- Women with cervical cancer experience short-term remission of cancer after administration of rabies vaccine¹
- Patients with cancers experience clinical remission after viral infection^{2,3}
- Inoculation of patients with cancer with crude viral preparations³
- Purified mumps virus induced tumor regression or decreased tumor size in patients with cancer⁴

Recombinant DNA technology⁵⁻⁷


Nuwer R. *New York Times*. March 19, 2012.
 Bierman HR, et al. *Cancer*. 1953;6:591-605.
 Kelly E, et al. *Mol Ther*. 2007;15:651-659
 Asada T. *Cancer*. 1974;34:1907-1928

5. Pray L. Nat Educ. 2008;1.

6. Cohen SN, et al. *Proc Natl Acad Sci U S A*. 1972;69:2110-2114.
7. Martuza RL, et al. *Science*. 1991;252:854-856.

Recombinant DNA technology allows engineering of more effective viruses

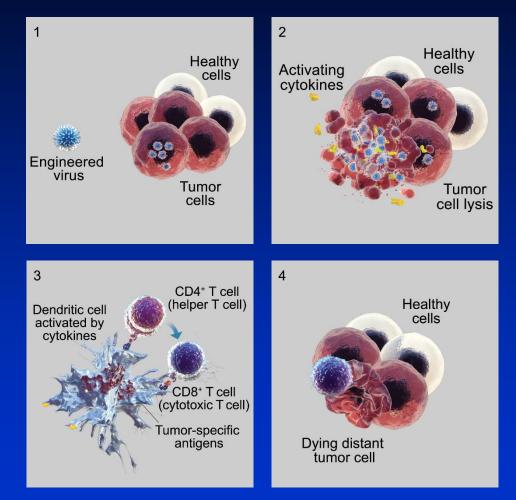
- Genetically engineered mutant herpes simplex virus killed glioma cells in vitro and inhibited the growth of implanted gliomas in mice¹
- Findings laid the groundwork for engineering of viruses to attempt to enhance tumor selectivity and the systemic immune response

Talimogene laherparepvec (T-VEC) an HSV-1 derived oncolytic immunotherapy

T-VEC key genetic modifications: JS1/ICP34.5-/ICP47-/hGM-CSF	ICP34.5 ICP47	
Genetic modification	Result	
Use of new HSV-1 strain (JS1)	Improved tumor cell killing ability compared with other strains	
Deletion of ICP34.5	Prevents HSV infection of non-tumor cells, providing tumor-selective replication	
Deletion of ICP47	Increased antigen presentation	
Earlier insertion of US11	Increases replication and oncolysis of tumor cells	
Insertion of human GM-CSF gene	Dendritic cell activation and enhancement of T-cell immunity	
HUNTSMAN CANCER INSTITUTE UNIVERSITY OF UTSH	Liu BL, et al. <i>Gene Ther.</i> 2003;10:292-303.	

Oncolytic immunotherapy is being designed to induce local and systemic effects

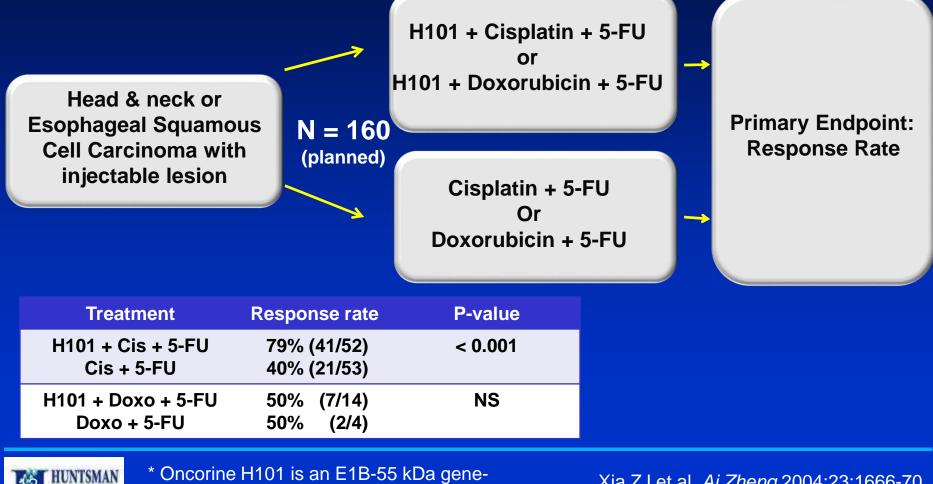
- Combines the local effect of an oncolytic virus with the systemic effect of an antitumor immune response^{1,2}
- Uses an engineered virus that selectively replicates in tumor cells for an antitumor effect¹
 - Oncolytic: direct cytotoxic activity³
 - Immunotherapy: indirect induction of a systemic antitumor immune response³



1. Li H, et al. In: Yotnda P, ed. Immunotherapy of Cancer: Methods in Molecular Biology. 2010:279-290.

Liu BL, et al. *Gene Ther.* 2003;10:292-303.
 Varghese S, et al. *Cancer Gene Ther.* 2002;9:967-978.

Oncolytic immunotherapy proposed mechanism of action


- Local effect
 - 1. Selective viral replication in target tumor cells^{1,2}
 - 2. Tumor cells rupture for an oncolytic effect¹⁻³
- Systemic effect
 - Indirect systemic tumorspecific immune response^{4,5}
 - 4. T-cell attack on distant tumor cells⁶
- Key players in oncolytic immunotherapy
 - Engineered virus
 - Tumor cells
 - Activating cytokines
 - Dendritic cells
 - Tumor-specific antigens
 - T cells

- 1. Hawkins LK, et al. *Lancet Oncol.* 2002;3:17-26.
- Fukuhara H, et al. *Curr Cancer Drug Targets*. 2007;7:149-155.
 Pol JG, et al. *Virus Adapt Treat*. 2012;4:1-21.
- 4. Melcher A, et al. *Mol Ther*. 2011;10:1008-1016.
- 5. Dranoff G. Oncogene. 2003;22:3188-3192.
- 6. Liu BL, et al. Gene Ther. 2003;10:292-303.

H101* Adenovirus Phase III trial First international approval of oncoloytic virus in China

deleted replication-selective adenovirus

Xia ZJ et al. *Ai Zheng* 2004;23:1666-70

Oncolytic viral treatment approaches are in development for multiple tumor types

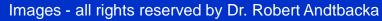
Virus	Tumor(s)	Phase in development
Adenovirus	SCCHN Bladder CRC, hepatobiliary, pancreatic Glioma, prostate Ovarian	3 2/3 2 1/2 1
Coxsackie	Melanoma SCCHN	1/2 1
HSV	Melanoma Glioma, SCCHN	3 1/2
Measles	Glioma, mesothelioma, myeloma, ovarian, SCCHN	1
Retrovirus	Glioma	1/2
Vaccinia	HCC, CRC Melanoma	2 1/2
VSV	HCC	1

CRC, colorectal cancer; HCC, hepatocellular carcinoma; HSV, herpes simplex virus; SCCHN, squamous cell carcinoma of the head and neck; VSV, vesicular stomatitis virus.

Melanoma intralymphatic metastasis Spectrum of disease (AJCC IIIB/IIIC)

- 3 10% of primary melanoma develop local / in-transit recurrences
 High risk groups: thick, ulcerated, positive SLN, lower extremity
- Source of significant morbidity
- Greater than 50% risk of distant disease and death

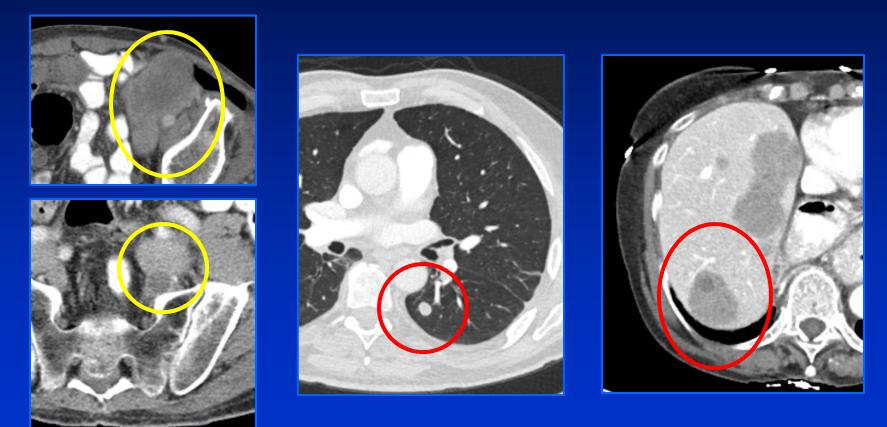
AJCC, American Joint Committee on Cancer; SLN, sentinel lymph node Ross MI. *Int J Hyperthermia*. 2008;24(3):205-217. SEER Cancer Statistics Review, 1975-2009, National Cancer Institute. Bethesda, MD. <u>http://seer.cancer.gov/csr/1975_2009_pops09/</u>. Accessed 5/30/13.


Lesions suitable for intratumoral injections

Dermal

Subcutaneous

Superficial lymph nodes

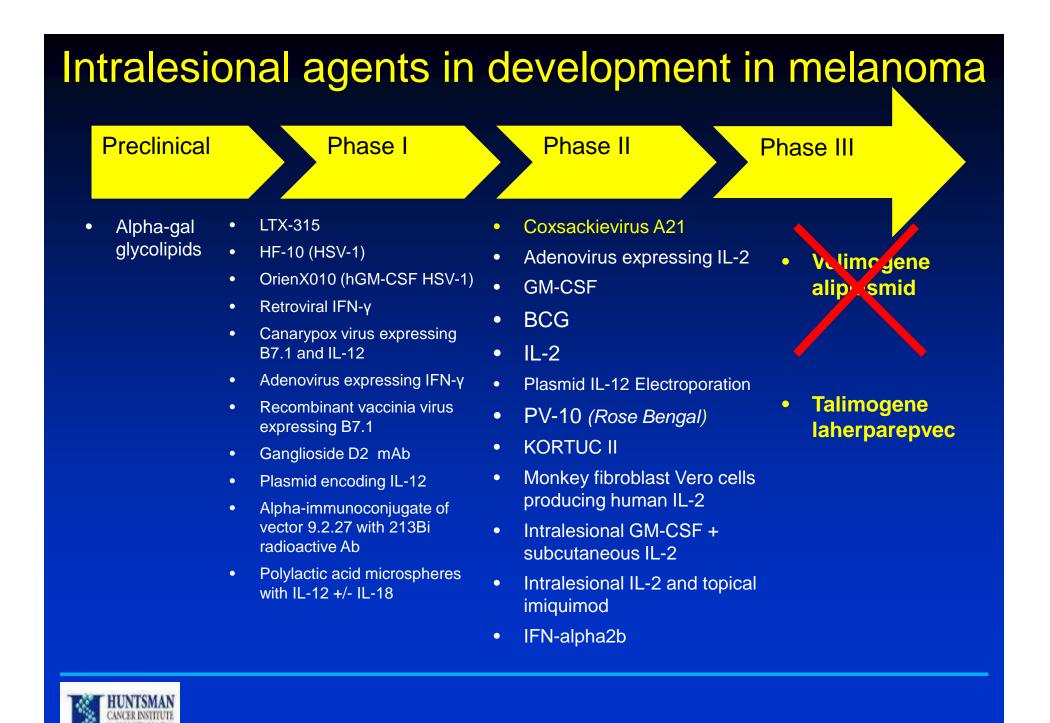


Lesions less suitable / available for intratumoral injections

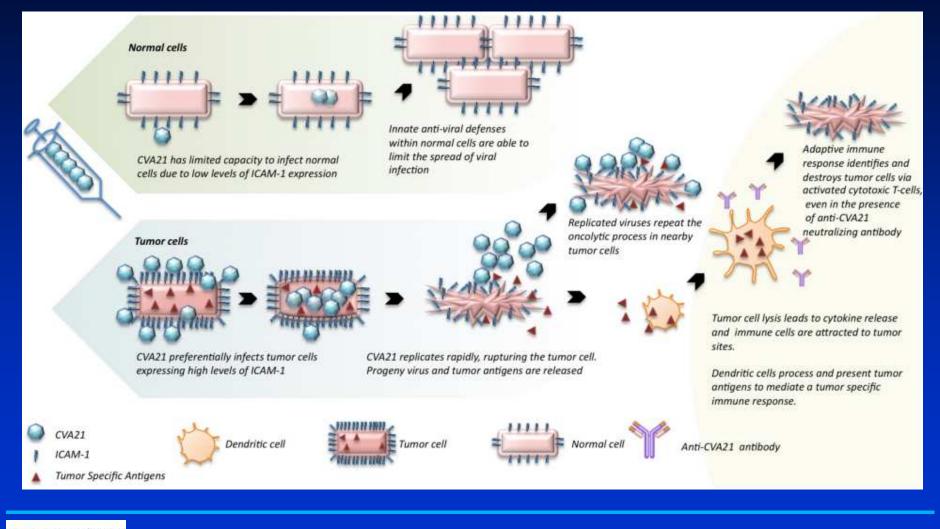
Deep lymph nodes / visceral lesions?

Injectable intralesional therapy Goals

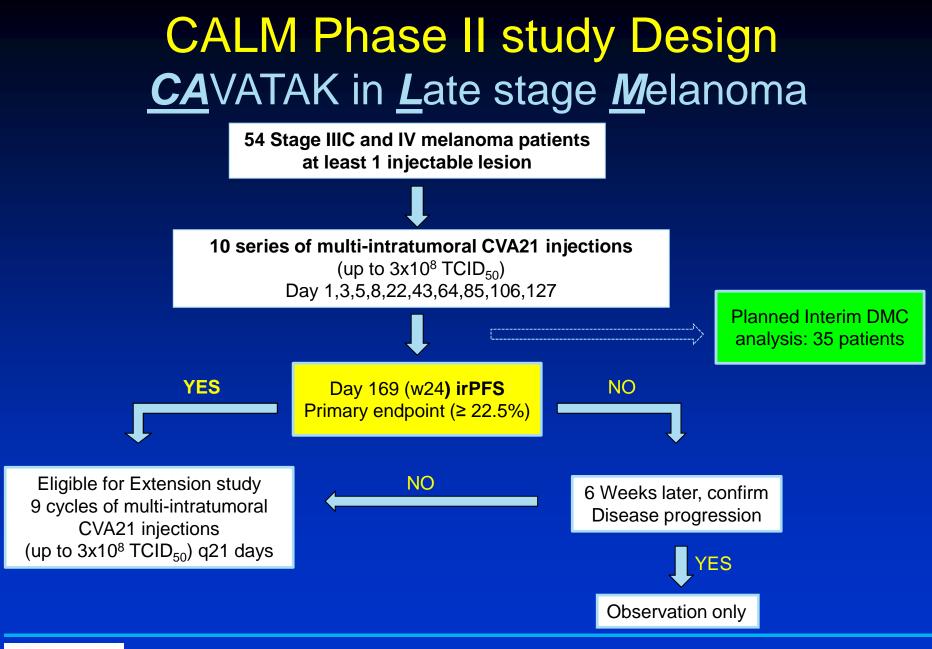
- Locally ablative therapy for local disease control
 - High local concentration
 - Palliation / local symptom control
- Induction of systemic host immune anti-tumor activity
 - Response in un-injected regional and distant metastases
 - Limited systemic toxicity
- Systemic neoadjuvant effect
 - Preventing stage IIIB / IIIC patients from developing stage IV melanoma
- Durable response



Intralesional agents in development


- Antibodies
- Cytokines
- Glycolipids
- Microspheres
- Plasmids
- Small molecules

- Radiosensitizers
- Vaccines
- Viruses
- Xeno-antigen Cell Lines
- Combinations therapies



Coxsackievirus A21(CVA21) Oncolytic immunotherapeutic modes of action

ANCER INSTITUTI

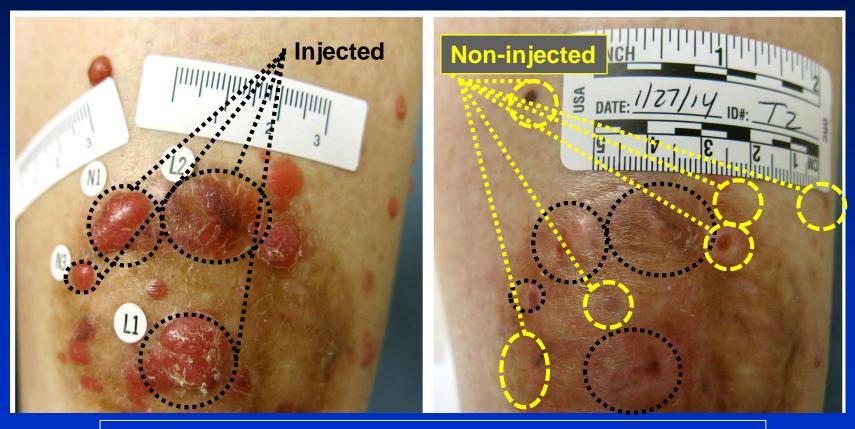
Andtbacka RHI, et al. World Melanoma Congress 2013

Andtbacka RHI, et al. World Melanoma Congress 2013

Injection of oncolytic immunotherapy virus

Video courtesy of Robert Andtbacka, MD, CM. All rights reserved.

Injection of oncolytic immunotherapy virus



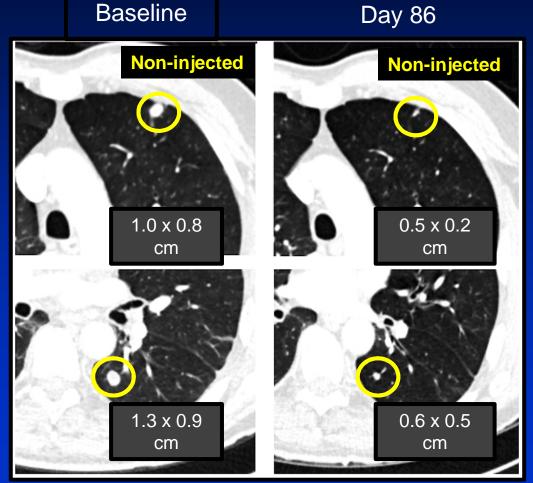
Video courtesy of Robert Andtbacka, MD, CM. All rights reserved.

CALM Phase II trial Local injected and non-injected lesion responses

Baseline

Day 85

Male with metastatic melanoma to the leg. Injection in leg lesions



Andtbacka RHI, et al. AACR 2014

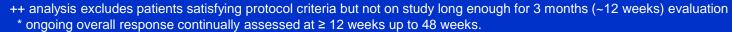
CALM Phase || trial Non-injected distant visceral lesion response

Male with metastatic melanoma to left neck and lungs. Injection in left neck.

CALM Phase II trial Current analysis: Response data (investigator assessed)

Primary endpoint (\geq 10 pts with irPFS 6 months from 54 evaluable pts)irPFS 6 months+(CR+PR+SD)irPFS 3 months++(CR+PR+SD)18 / 30 pts (60.0%)

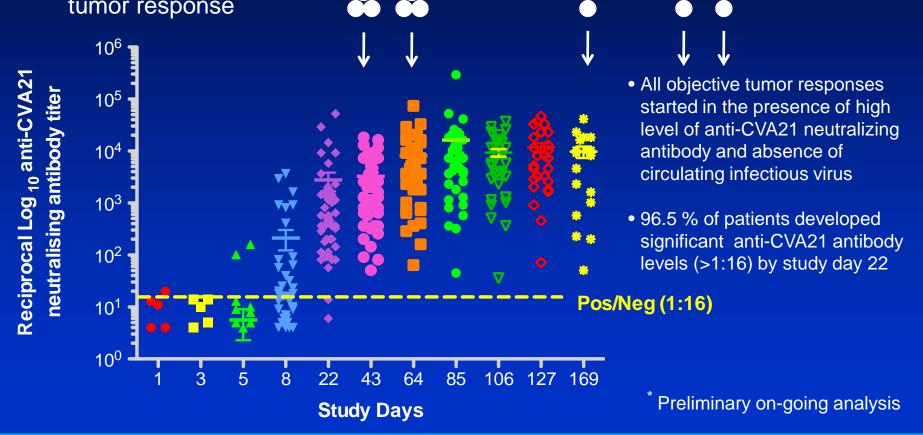
Secondary endpoint


Overall response rate^{*} (CR+PR, irRECIST 1.1)

26.7 % (8 / 30 pts; 2 CR and 6 PR)

Interim futility clause of ≥ 3 CR or PR in first 35 pts: (modified RECIST 1.1)

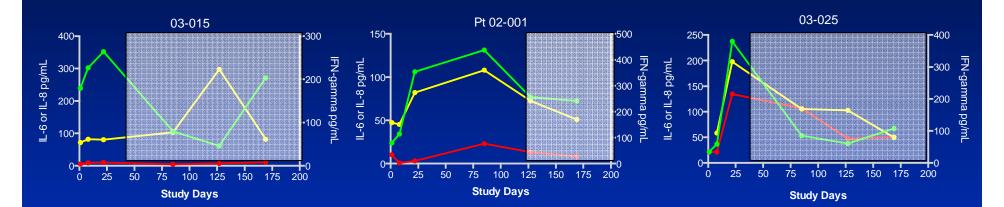
Achieved

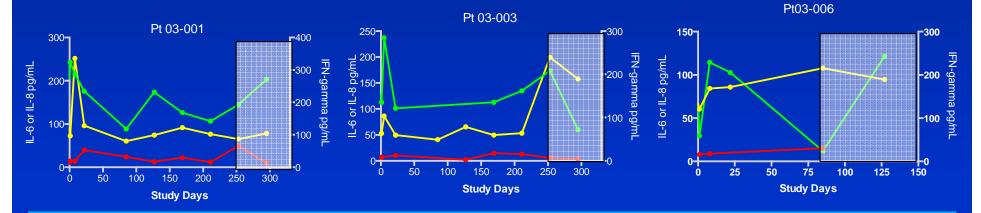

+ analysis excludes patients satisfying protocol criteria but not on study long enough for 6 months evaluation

Andtbacka RHI, et al. World Melanoma Congress 2013

CALM Phase II trial Patient anti-viral immune response: Serum neutralizing antibody levels *

Start of Objective tumor response

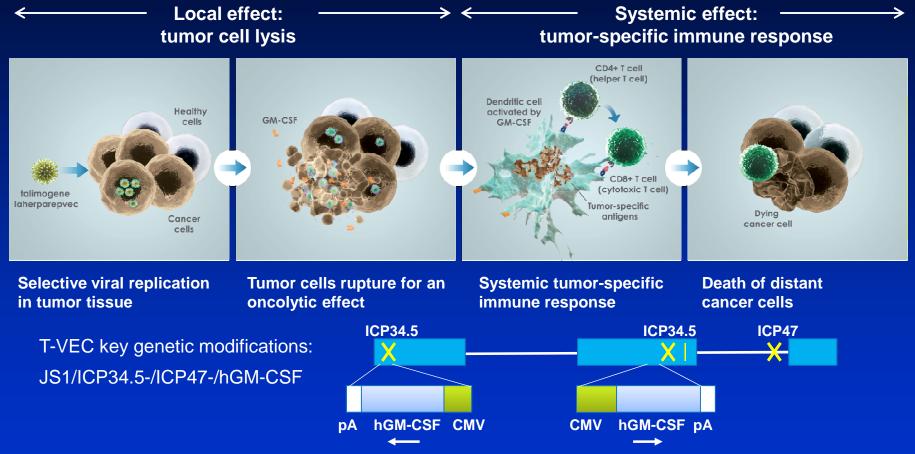




Andtbacka RHI, et al. AACR 2014

CALM Phase II trial

Preliminary analysis: Serum cytokine activity (Patients with objective responses)

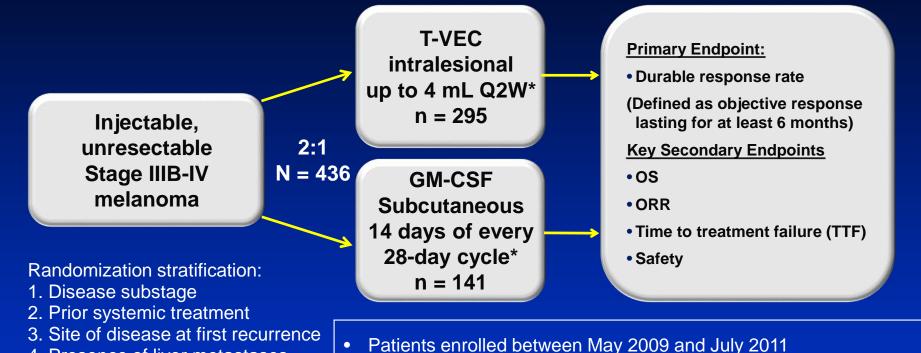

Andtbacka RHI, et al. AACR 2014

1.-5

L-8

IFN-gamma

T-VEC: an HSV-1 derived oncolytic immunotherapy designed to produce both local and systemic effects



HSV, herpes simplex virus type 1; ICP, infected cell protein; hGM-CSF, human granulocyte-macrophage colony-stimulating factor; CMV, cytomegalovirus; pA, polyadenylation (from bovine growth hormone).

Varghese S and Rabkin SD. *Cancer Gene Ther*. 2002;9:967–978. Hawkins LK, et al. *Lancet Oncol*. 2002;3:17–26. Fukuhara H and Toda T. *Curr Cancer Drug Targets*. 2007;7:149–155. Sobol PT, et al. *Mol Ther*. 2011;19:335–344. Liu BL, et al. *Gene Ther*. 2003;10:292–303. Melcher A, et al. *Mol Ther*. 2011;19:1008–1016. Fagoaga OR. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods; 2011:933–953. Dranoff G. *Oncogene*. 2003;22:3188–3192.

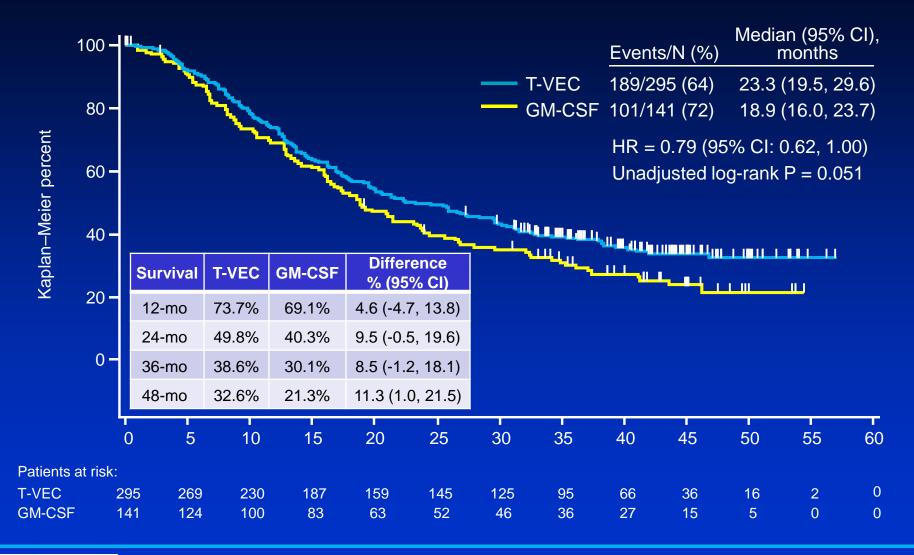
OPTiM phase III study design

- 4. Presence of liver metastases
- Patients enrolled at 64 sites in USA, UK, Canada, and South Africa
- Patients were to remain on treatment beyond progression unless clinically significant (ie, associated with reduced performance status) after 24 weeks

*Dosing of intralesional T-VEC was $\leq 4 \text{ mL x}10^6 \text{ pfu/mL}$ once, then after 3 weeks, $\leq 4 \text{ mL x}10^8 \text{ pfu/mL}$ every two weeks (Q2W). Dosing of GM-CSF was 125 µg/m² subcutaneous daily x 14 days of every 28 day cycle.

Andtbacka RHI, et al. ASCO 2013 abstract LBA9008. Kaufman H, et al. ASCO 2014 abstract 9008a.

OPTiM phase III study results Primary endpoint: durable response rate per EAC^{*} Secondary endpoint: objective response per EAC


ITT set	GM-CSF (n = 141)	T-VEC (n = 295)	Treatment difference (T-VEC – GM-CSF)	
Durable response rate	2.1%	16.3%	14.1% 95% CI (8.2, 19.2) P < 0.0001 (unadjusted odds ratio 8.9)	
ITT Set	GM-CSF (n = 141)	T-VEC (n = 295)	Treatment difference (T-VEC – GM-CSF)	
Objective overall response (95% CI)	5.7% (1.9, 9.5)	26.4% (21.4, 31.5)	20.8% (14.4, 27.1) P < 0.0001 descriptive	
CR	0.7%	10.8%	41% CR in T-VEC	
PR	5.0%	15.6%	Responders	

*Rate of CR or PR that began at any point within 12 months of initiation of therapy and lasted continuously for 6 months or longer. Determined using modified WHO criteria by an independent, blinded endpoint assessment committee (EAC). ITT, intention to treat; CI, confidence interval.

Andtbacka RHI, et al. ASCO 2013 abstract LBA9008. Kaufman H, et al. ASCO 2014 abstract 9008a.

Primary overall survival

HUNTSMAN CANCER INSTITUTE UNIVERSITY OF UTABL HR, hazard ratio.

Kaufman H, et al. ASCO 2014 abstract 9008a.

Injectable intralesional therapy Goals

- Locally ablative therapy for local disease control
 - High local concentration
 - Palliation / local symptom control
- Induction of systemic host immune anti-tumor activity
 - Response in un-injected regional and distant metastases
 - Limited systemic toxicity
- Systemic neoadjuvant effect
 - Preventing stage IIIB / IIIC patients from developing stage IV melanoma
- Durable response

Injectable intralesional therapy Goals

- Locally ablative therapy for local disease control
 - High local concentration
 - Palliation / local symptom control
- Induction of systemic host immune anti-tumor activity
 - Response in un-injected regional and distant metastases
 - Limited systemic toxicity
- Systemic neoadjuvant effect
 - Preventing stage IIIB / IIIC patients from developing stage IV melanoma
- Durable response

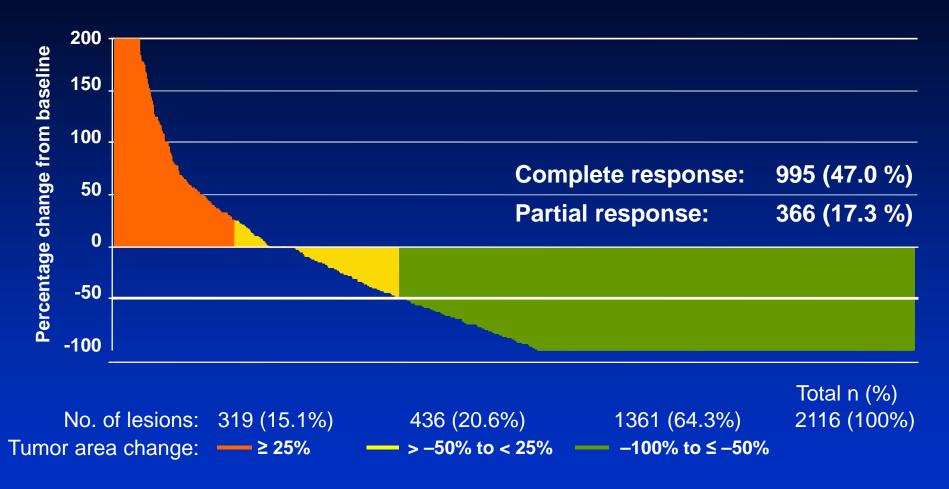
T-VEC responses in injected lesions

2nd injection

1st injection

Screening (week 1)

(week 6) (week 4) (week 16)


66 yo male with stage IIIC melanoma of the right arm. Intransit melanoma and axillary lymph node metastases. Prior adjuvant high dose IFN-α2b. Prior 4 cycles of 3mg/kg ipilimumab for unresectable stage IIIC melanoma.

Images - all rights reserved by Dr. Robert Andtbacka

8th injection

64% of injected lesions responded to T-VEC^{1,2}

¹Injected lesions were those lesions recorded as having been ever injected by investigators.

²To be considered in response, lesions must have the smallest recorded area measurement \leq 50% of the first recorded area measurement (baseline).

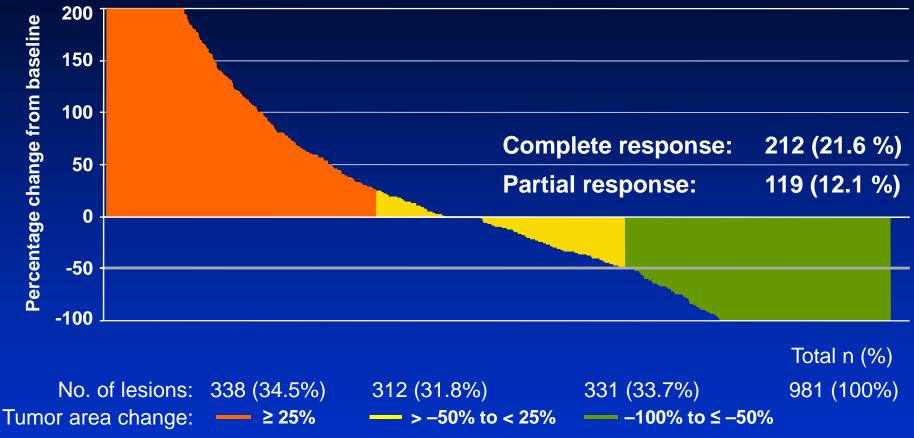
Andtbacka RHI, et al. SSO 2014 abstract PCC-121.

Injectable intralesional therapy Goals

- Locally ablative therapy for local disease control
 - High local concentration
 - Palliation / local symptom control
- Induction of systemic host immune anti-tumor activity
 - Response in un-injected regional and distant metastases
 - Limited systemic toxicity
- Systemic neoadjuvant effect
 - Preventing stage IIIB / IIIC patients from developing stage IV melanoma
- Durable response

T-VEC responses in injected and uninjected lesions

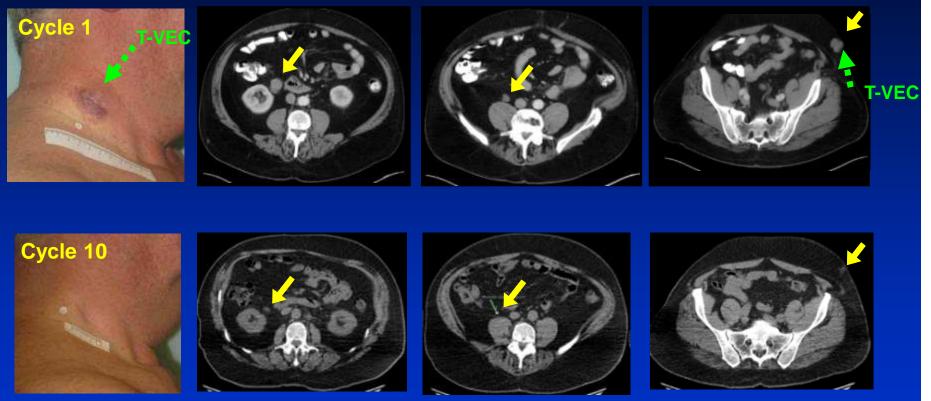
Cycle 1


Cycle 13

Andtbacka RHI, et al. ASCO 2013 abstract LBA9008.

34% of non-injected non-visceral lesions responded to T-VEC^{1,2}

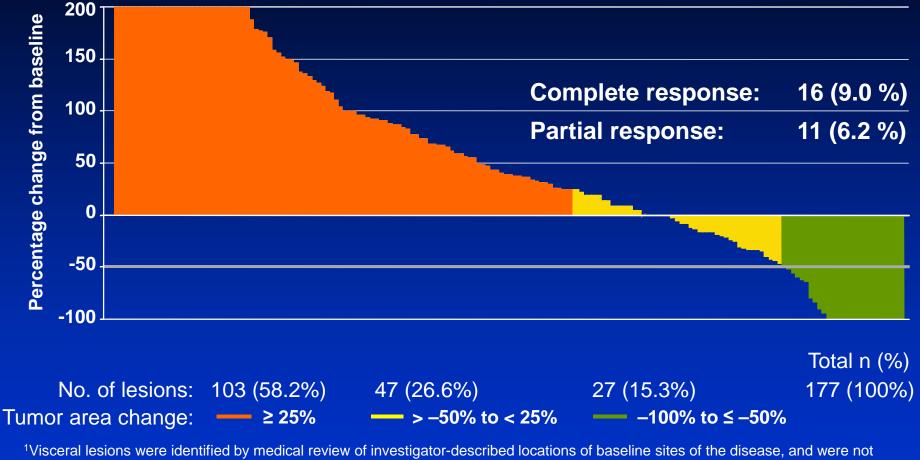
¹Non-injected non-visceral lesions were those non-visceral lesions recorded as having been never injected by the investigator. ²To be considered in response, lesions must have the smallest recorded area measurement \leq 50% of the first recorded area measurement (baseline).


Andtbacka RHI, et al. SSO 2014 abstract PCC-121.

Injectable intralesional therapy Goals

- Locally ablative therapy for local disease control
 - High local concentration
 - Palliation / local symptom control
- Induction of systemic host immune anti-tumor activity
 - Response in un-injected regional and distant metastases
 - Limited systemic toxicity
- Systemic neoadjuvant effect
 - Preventing stage IIIB / IIIC patients from developing stage IV melanoma
- Durable response

Injected and non-injected lesion response



There were 6 measurable lesions at baseline including 1 cutaneous neck lesion, 2 subcutaneous abdominal wall lesions (1 of which is shown), 2 intra-abdominal lesions (which are shown), and 1 in musculature of right thigh (which completely resolved). Both injected lesions are indicated by a green arrow.

Kaufman H, et al. ASCO 2014 abstract 9008a.

15% of visceral lesions responded to T-VEC^{1,2}

allowed to be injected.

²To be considered in response, lesions must have the smallest recorded area measurement \leq 50% of the first recorded area measurement (baseline).

Andtbacka RHI, et al. SSO 2014 abstract PCC-121.

Injectable intralesional therapy Goals

- Locally ablative therapy for local disease control
 - High local concentration
 - Palliation / local symptom control
- Induction of systemic host immune anti-tumor activity
 - Response in un-injected regional and distant metastases
 - Limited systemic toxicity
- Systemic neoadjuvant effect
 - Preventing stage IIIB / IIIC patients from developing stage IV melanoma
- Durable response

OPTiM safety: adverse events (AEs)

AEs of all grades occurring in ≥ 20% of T-VEC treated patients

Grade 3/4 AEs occurring in ≥ 5 patients in either arm

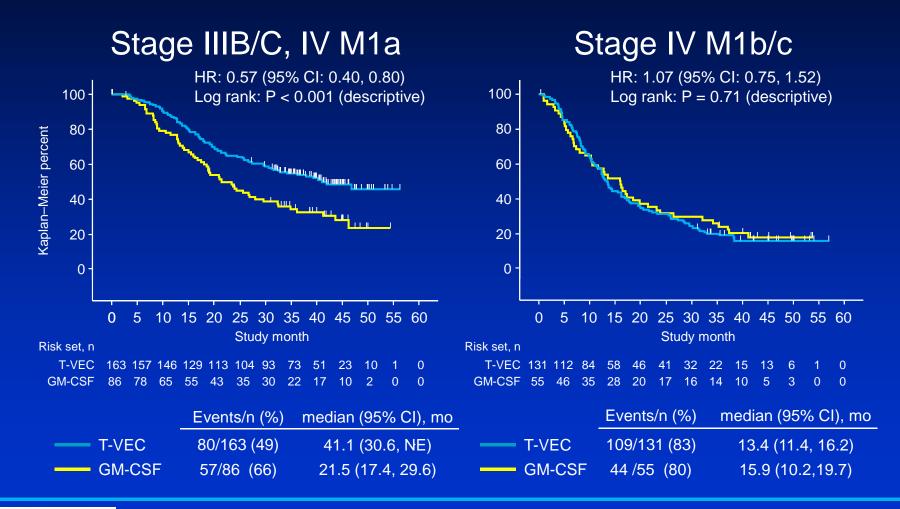
Preferred term – % all grade AEs	GM-CSF (n = 127)	T-VEC (n = 292)	Preferred term – % all grade AEs	GM-CSF (n = 127)	T-VEC (n = 292)
Fatigue	36.2%	50.3%	Cellulitis	<1%	2.1%
Chills	8.7%	48.6%	Fatigue	<1%	1.7%
Pyrexia	8.7%	42.8%	Vomiting	0	1.7%
Nausea	19.7%	35.6%	Dehydration	0	1.7%
Influenza-like illness	15.0%	30.5%	Deep vein thrombosis	0	1.7%
Injection site pain	6.3%	27.7%	Tumor pain	0	1.7%
Vomiting	9.4%	21.2%			

Of 10 total fatal AEs on the T-VEC arm, 8 were due to progressive disease (PD). The only 2 fatal AEs on the T-VEC arm not associated with PD were sepsis (in the setting of cholangitis) and myocardial infarction. No treatment-related fatal AEs were observed.

Andtbacka RHI, et al. ASCO 2013 abstract LBA9008.

Injectable intralesional therapy Goals

- Locally ablative therapy for local disease control
 - High local concentration
 - Palliation / local symptom control
- Induction of systemic host immune anti-tumor activity
 - Response in un-injected regional and distant metastases
 - Limited systemic toxicity
- Systemic neoadjuvant effect
 - Preventing stage IIIB / IIIC patients from developing stage IV melanoma
- Durable response


DRR by key covariates (Exploratory Subgroup Analyses)

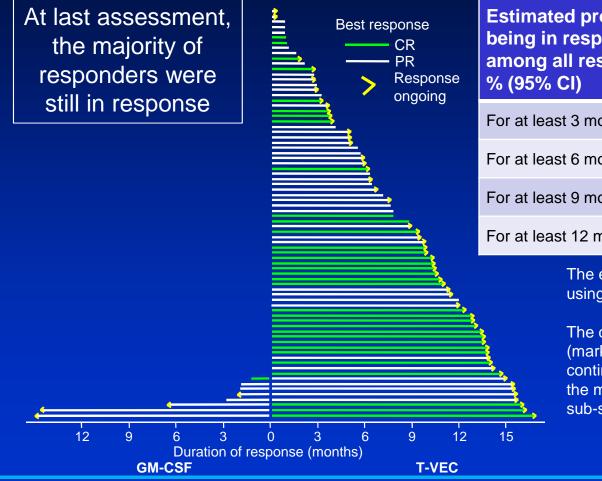
Favors GM-CSF	Favors T	-VEC n	GM-CSF (%	%)T-VEC (%	%) Diff. % (95% CI)
All randomly assigned	H	436	2.1	16.3	14.1 (8.2–19.2)
Disease Stage IIIB / IIIC 🦷 🌈		131	0.0	33.0	33.0 (19.1–43.9)
Disease Stage IV M1a		118	2.3	16.0	13.7 (0.2–24.6)
Disease Stage IV M1b		90	3.8	3.1	-0.7 (-18.6–8.7)
Disease Stage IV M1c	+ •1	96	3.4	7.5	4.0 (-12.8–14.3)
Line of therapy – first line		203	0.0	23.9	23.9 (14.3–32.1)
Line of therapy $- \ge$ second line	н	233	3.9	9.6	5.6 (-3.2–12.3)
Male	⊢ ⊷⊣	250	2.6	16.8	14.2 (5.3–21.1)
Female		186	1.6	15.6	14.0 (4.2–22.1)
ECOG – 0	—	306	3.1	18.2	15.1 (7.1–21.6)
ECOG – 1	+	114	0.0	12.2	12.2 (-2.4–21.7)
HSV-1 status – negative		142	0.0	13.4	13.4 (2.0–22.2)
HSV-1 status – negative		253	3.8	17.7	
		203	3.0	17.7	13.9 (4.5–21.1)
-20 0 20 40					
DRR difference (T-VEC-GM-CSF)					

Andtbacka RHI, et al. ASCO 2013 abstract LBA9008. Kaufman H, et al. ASCO 2014 abstract 9008a.

Exploratory OS subgroup analysis by disease stage

Mo, months.

Kaufman H, et al. ASCO 2014 abstract 9008a.


Injectable intralesional therapy Goals

- Locally ablative therapy for local disease control
 - High local concentration
 - Palliation / local symptom control
- Induction of systemic host immune anti-tumor activity
 - Response in un-injected regional and distant metastases
 - Limited systemic toxicity
- Systemic neoadjuvant effect
 - Preventing stage IIIB / IIIC patients from developing stage IV melanoma

Durable response

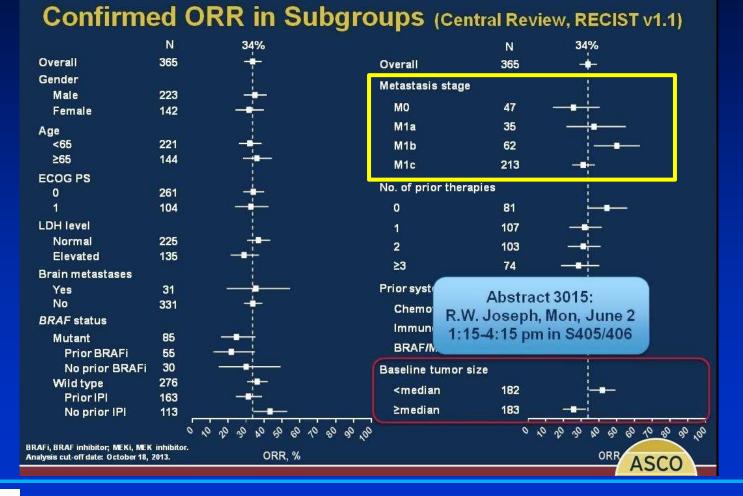
Duration of longest response among responders (per EAC)

Estimated probability of being in response among all responders, % (95% CI)	GM-CSF (n = 8)	T-VEC (n = 78)	
For at least 3 months	46.9 (12, 76)	86.7 (77, 93)	
For at least 6 months	46.9 (12, 76)	80.6 (69, 88)	
For at least 9 months	46.9 (12, 76)	68.0 (55, 78)	
For at least 12 months	46.9 (12, 76)	65.0 (51, 76)	

The estimated probability was obtained using the Kaplan–Meier method

The duration of response is censored (marked by an arrow >) if response continued at last tumor assessment within the main study, or at the initialization of sub-sequent anti-cancer therapy

> Andtbacka RHI, et al. COSA 2013. Ross MI, et al. ASCO 2014 abstract 9026.



Future role for oncolytic immunotherapy (OT)

- Is there a role for Oncolytic Immunotherapy monotherapy?
 - Yes, especially unresectable stage IIIB/C (IV M1a) disease

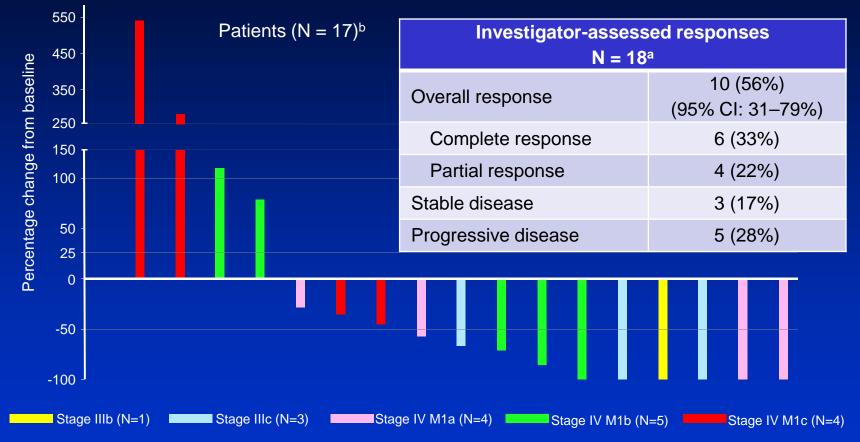
Pembrolizumab ORR in unresectable metastatic melanoma

Presented By Antoni Ribas at 2014 ASCO abstract LBA9000

Immunotherapy responses in patients with unresectable stage IIIB/C melanoma

Therapy	Objective Response Rate*		
T-VEC ¹	52%		
Ipilimumab	< 30% (stage IV 11-20%)		
Pembrolizumab ²	27%		
* These treatments have not been compared in a trial and the ORR represents data in the presented / published literature.			

- 1. Andtbacka RHI, et al. unpublished data
- 2. Ribas A, et al. ASCO 2014 abstract LBA9000


Future role for oncolytic immunotherapy (OT)

- Is there a role for Oncolytic Immunotherapy monotherapy?
 - Yes, especially unresectable stage IIIB/C (IV M1a) disease
 - Yes, patients not eligible for other therapies due to comorbidities
 - Yes, neoadjuvant prior to surgery in resectable stage IIIB/C
 - Planned Phase II trial surgery +/- T-VEC (NCT02211131)
- Is there a role for Oncolytic Immunotherapy combo-therapy?

Yes, ongoing Phase Ib/II ipilimumab +/- T-VEC

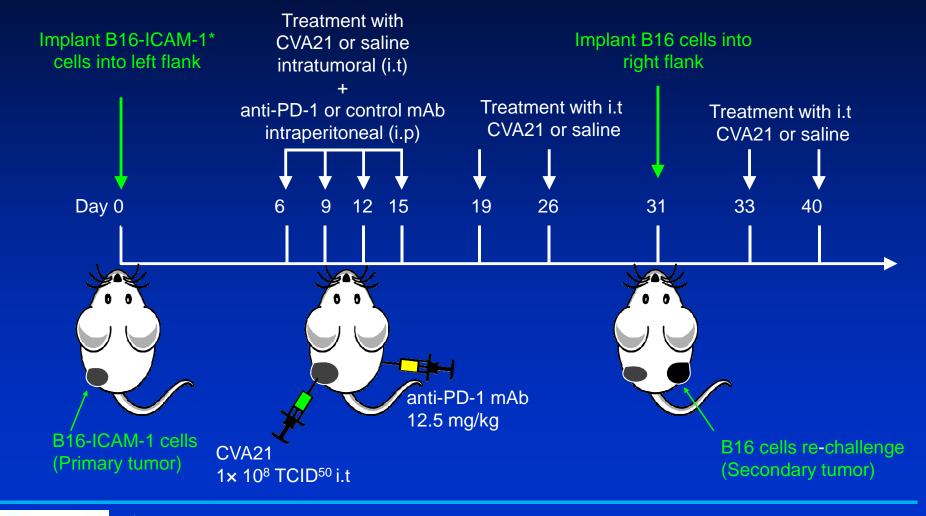
Maximal change in tumor burden

^aEfficacy analysis set includes only the patients who received both T-VEC and ipilimumab. ^bOne patient assessed to have PD by the investigator was not shown in the plot because tumor burden could not be accurately calculated based on missing post-baseline data.

Puzanov I, et al. ASCO 2014 abstract 9029.

Future role for oncolytic immunotherapy (OT)

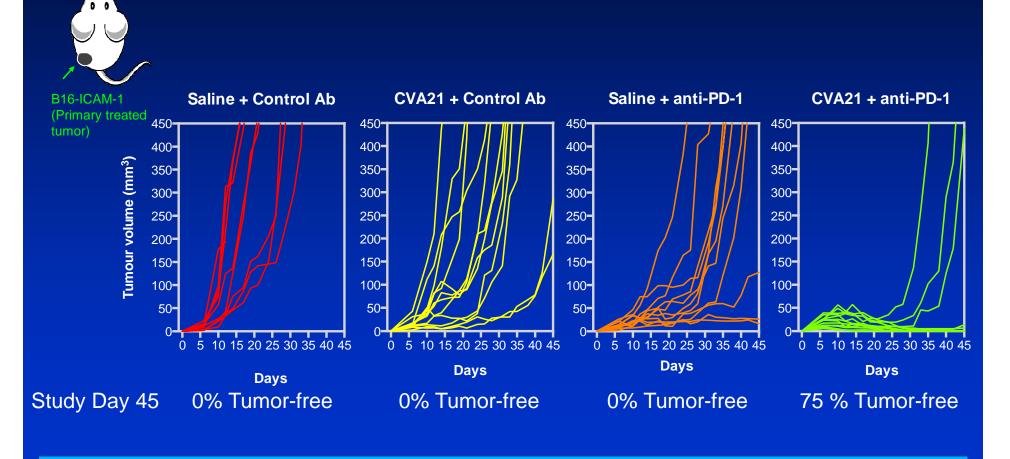
- Is there a role for Oncolytic Immunotherapy monotherapy?
 - Yes, especially unresectable stage IIIB/C (IV M1a) disease
 - Yes, patients not eligible for other therapies due to comorbidities
 - Yes, neoadjuvant prior to surgery in resectable stage IIIB/C
 - Planned Phase II trial surgery +/- T-VEC (NCT02211131)
- Is there a role for Oncolytic Immunotherapy combo-therapy?
 - Yes, ongoing Phase Ib/II ipilimumab +/- T-VEC
 - Yes, planned:
 - Phase Ib/II pembrolizumab +/- T-VEC
 - Phase Ib/II ipilimumab + HF-10
 - Phase II anti-PD-1 +/- CVA21
 - Yes, other agents: B-raf inh., MEK inh., PD-L1, chemo, radiation


Future role for oncolytic immunotherapy (OT)

Need to understand

– Mechanism of action mono- and combination therapy

Assessment of combination of intralesional CVA21 and immune checkpoint antibody blockade (anti-PD-1) in an immunecompetent C57BL mouse melanoma model

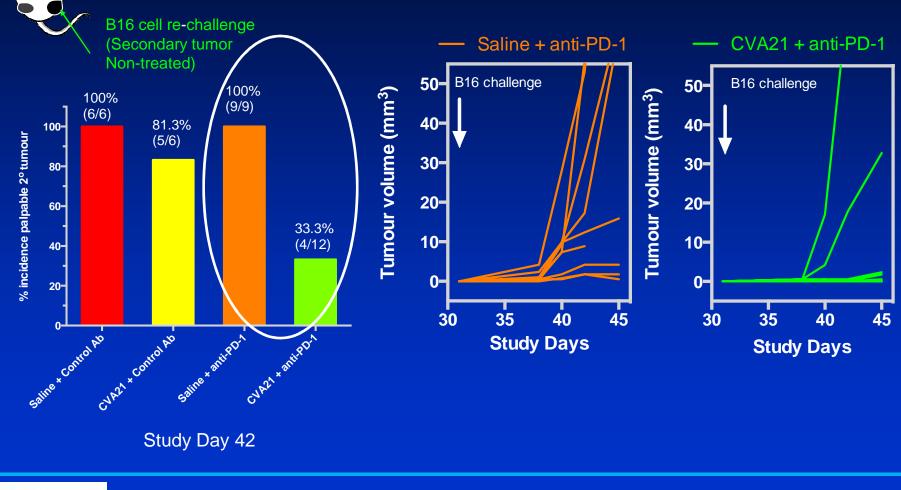


B16-ICAM-1 cells are murine melanoma B16 cells stably transfected to express human ICAM-1 to allow CVA21 binding and cell infection

Andtbacka RHI, et al. AACR 2014

Combination of intralesional CVA21 and immune checkpoint antibody blockade (anti-PD-1)

Spider plot of Individual primary B16-ICAM-1 tumor growth*



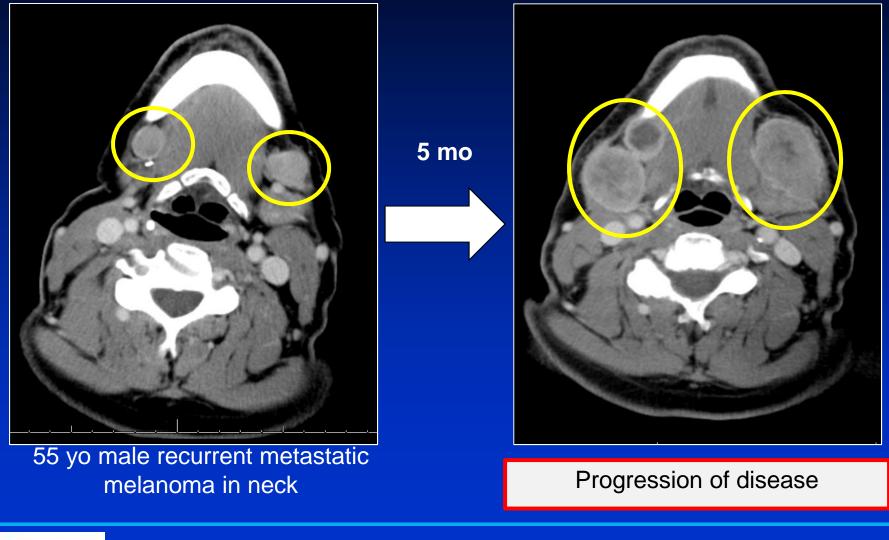
Preliminary on-going analysis

Andtbacka RHI, et al. AACR 2014

Combination of intralesional CVA21 and immune checkpoint antibody blockade (anti-PD-1) Incidence of palpable secondary B16 tumor *

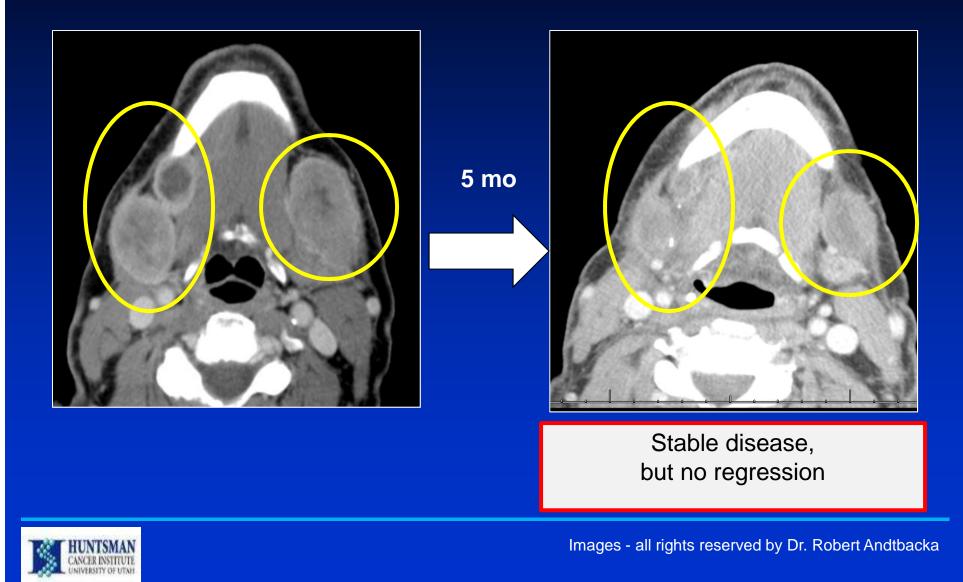
Preliminary on-going analysis

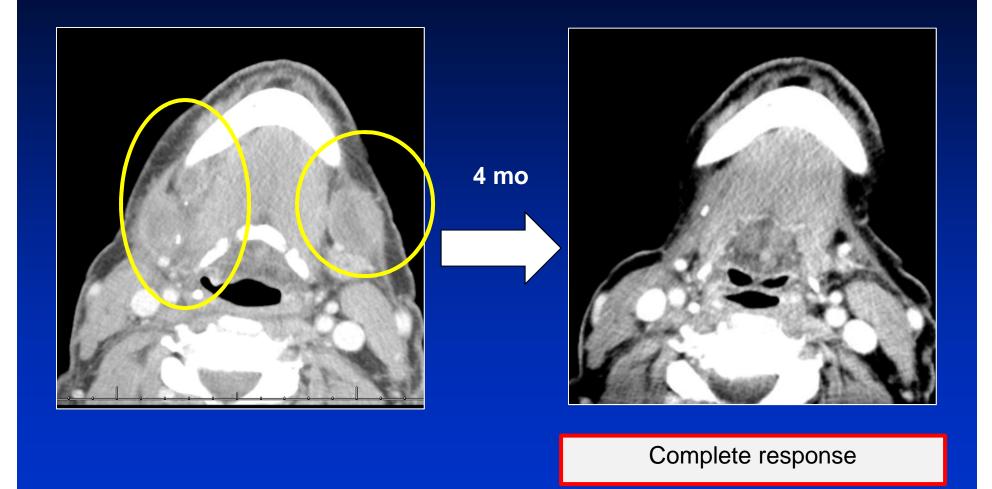
Andtbacka RHI, et al. AACR 2014


Future role for oncolytic immunotherapy (OT)

Need to understand

- Mechanism of action mono- and combination therapy
- Prognostic and predictive biomarkers
- Sequencing

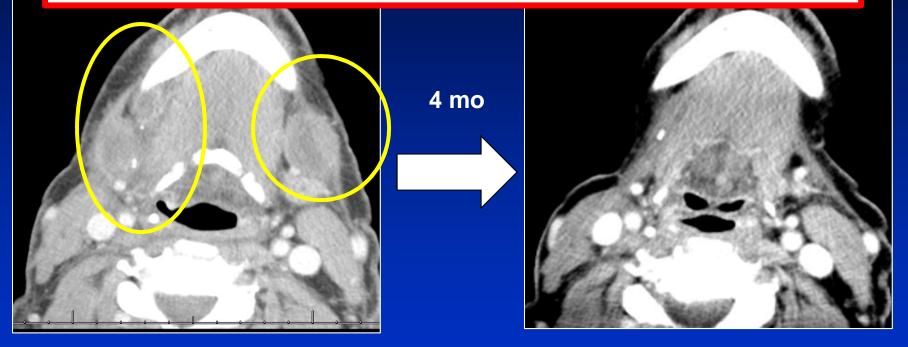

Injectable Oncolytic immunotherapy



Images - all rights reserved by Dr. Robert Andtbacka

Ipililumab and concomitant XRT to neck

Second injectable oncolytic immunotherapy



Images - all rights reserved by Dr. Robert Andtbacka

Second injectable oncolytic immunotherapy

Which treatment resulted in response?

Complete response

Images - all rights reserved by Dr. Robert Andtbacka

Thank you

Questions

Oncolytic virus therapy has been associated with the following in the treatment of metastatic melanoma

A. No response

- B. Response in injected metastatic lesions only
- C. Response in injected lesions and close by non-injected metastatic lesions only
- D. Response in injected lesions, close by non-injected metastatic lesions, and distant (visceral) non-injected metastatic lesions

Talimogene laherparepvec (T-VEC) oncolytic virus therapy has been associated with the following in the treatment of metastatic melanoma

- A. Good response rates, but limited durability of the response
- B. Low rate of Grade 3 / 4 adverse events
- C. Increased adverse events when combined with ipilimumab, compared to ipilimumab monotherapy
- D. No improvement in response rate when combined with ipilimumab
- E. C and D

In the OPTiM metastatic melanoma study, treatment with talimogene laherparepvec (T-VEC) compared to GM-CSF resulted in:

- A. A worse response rate
- B. Improvement in durable response rate and objective response rate
- C. Improvement in overall survival
- D. B+C

