

Biology of Innate Immunity: NK cells, Macrophages, PMN, PAMP/TLR

Lewis.Lanier@ucsf.edu

Innate vs. Adaptive Immunity

<u>Innate</u> Immediate response

Receptors -invariant, germline encoded <u>Adaptive</u> Delayed response

Receptors - require somatic genetic recombination

No 'memory'- constant number of precursors, constant response kinetics Memory'- after primary exposure higher precursor frequency and faster response kinetics

Innate vs. Adaptive Immunity

<u>Innate</u>	<u>Adaptive</u>	
Epithelial cells	T cells	

Granulocytes B cells

Monocytes, dendritic cells & macrophages

Mast cells

NK cells

Does innate immunity prevent or promoter tumor growth?

Innate immunity promotes tumor growth

Inflammation - activated macrophages & granulocytes -provide angiogenic factors & growth factors and maxtrix metalloproteinases that promote tumor spread

Innate immunity prevents tumor growth

NK cells kill tumors and dendritic cells process tumor antigens and prime an adaptive (B & T cell) response

Inflammation in human breast and prostate cancer

Copyright © 2005 Nature Publishing Group Nature Reviews | Cancer

de Visser KE et al. (2006) Paradoxical roles of the immune system during cancer development Nat. Rev. Cancer. 6: 24-37 doi:10.1038/nrc1782

Innate immunity promotes tumor growth

-Chronic inflammation predisposes to cancer (liver, colon)

-COX2 inhibitors diminish cancer risk

-TNF α activates NF κ b promotes tumor survival of hepatic and colon carcinomas in mouse models (Pikarsky et al. Nature 431, 461, 2004 & Greten et al. Cell 118, 285, 2004)

<u>Innate immunity prevents tumor</u> <u>growth</u>

-Direct cell-mediated cytotoxicity

-Cytokine-mediated anti-tumor effects

Innate Cytokines

Epithelial cells ---- Type I interferon, pro-inflammatory cytokines

Granulocytes --- Pro-inflammatory cytokines, reactive oxygen species (ROS), IL-12

Macrophages -- Pro-inflammatory cytokines, ROS, VEGF

Conventional Dendritic Cells -- pro-inflammatory cytokines, IL-12, IL-15

Interferon-producing Dendritic Cells - Type I interferon, IL-12

Mast cells - Pro-inflammatory cytokines, arachidonic acid, IL-4

NK cells - Interferon- γ , TNF, chemokines

What initiates cytokine production by innate immune cells?

The story of the Toll-like receptors begins with insect immunity

Toll-dependent innate immune responses in *Drosophila* to fungus and Gram+ bacteria

Lemaitre et al. 1996 Cell 86:973

Courtesy Mitch Kronenberg

Mammalian Toll-Like Receptors

TLR recognize conserved structures in microbes

Courtesy Mitch Kronenberg

TLR signaling pathways

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Mammalian Toll-Like Receptors

Interferon-producing dendritic cells -TLR 7, TLR9

Conventional dendritic cells - TLR1, 2, 4, 5, 6, 8

Resting NK cells - No functional TLR Activated NK cells - TLR3, TLR9

TLR-based cancer therapy 100 years ago!

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

> Bacterial infection post-surgery for cancer induces regression and prevention of metastasis

Tumor Immunology and Immunotherapy

DR. WILLIAM B. COLEY

First, a little history...

William B. Coley

Cancer Surgeon at Memorial Hospital (NYC) at the turn of the 20th Century
Observed that a cancer patient who developed a severe bacterial infection (strep.pyogenes) had spontaneous regression of his tumors.

• Treated over 900 solid tumor patients with a crude bacterial extract ("Coley's Toxin") and reported a 40% response rate, some leading to long term remissions.

• Approach largely abandoned after his death.

• His daughter, Helen Coley Nauts founded the Cancer Research Institute, which is one of the largest private foundations supporting basic and applied research in tumor immunology.

TLR ligands as cancer therapies

Coley's Pharma TLR9 agonist CpG effective in Non-small cell lung cancer

> QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

3M TLR7 agonist imiquimod Approved for superficial basal carcinoma

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Role of macrophages and granulocytes in innate tumor immunity?

In vivo

-primary tumorigenesis take weeks or months -no feasible way to deplete granulocytes and macrophages for extended periods

In vitro

-macrophages kill tumors *in vitro* but receptors (other than FcR) on macrophages & ligands on tumors not defined

Eosinophil-mediated tumor immunity

Renca-IL4 wt

Renca-IL4 Rencu W) decompress cid or nude

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Higher incidence of 3-MCA-induced fibrosarcomas in interferon- α/β receptor-/- mice

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

NK cells and tumor immunity

- Identified in '70s as lymphocytes from healthy humans and mice able to kill certain tumors in vitro
- Function in innate immunity to protect against viruses, bacteria, & tumors
- Produce cytokines & kill abnormal cells

Immune surveillance against cancer by NK cells

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Mice depleted of NK cells with anti-AsialoGM1 or depleted of NK cells and NKT cells with anti-NK1.1 have are needed to see this picture. higher incidence of 3-MCA-induced sarcomas

> QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

NK Cells Reject Tumors Lacking MHC Class I

Class I⁻ tumors are rejected

Class I⁻ tumors in NK-depleted mice grow *in vivo*

Mice reject MHC class I-negative RMA/S, but not class I-positive RMA lymphoma

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Immune surveillance for 'Missing Self'

- NK cells preferentially kill cells that have lost MHC class I
- Provides protection against cells escaping T cell recognition
- Predicts existence of inhibitory receptors for MHC class I that spare normal cells from NK cell attack

– Karre et al Nature 319:675, 1986

Loss of Class I MHC Expression in a Prostate Carcinoma

How are NK cells activated when they encounter tumors or virusinfected cells?

Activating NK receptors - ligands

•	Human/mouse CD16-FcεRIγ/ζ	IgG	
•	Human CD2	•	CD58
•	Human 2B4 (CD244)-SAP	CD48	
•	Human DNAM-1 (CD226)	CD112	, CD155
•	Mouse PILRβ-DAP12	PILR-l	-
•	Human NKG2D-DAP10	MICA	/B, ULBP
•	Mouse NKG2D-DAP10/12	RAE-1,He	50, MULT1
•	Human/mouse NKp46-FcεRIγ/ζ		?
•	Human NKp30-FcεRIγ/ζ		?
•	Human NKp44-DAP12	?	
•	Mouse NKR-P1c-Fc ϵ RI γ	?	

Antibody-dependent cellular cytotoxicity

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Expressed by NK cells and macrophages

Cytotoxicity, cytokine production

FDA-approved therapeutic monoclonal antibodies

CD20	
Her2	
CD33	
CD52	QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
CD20	
CD20	
EGF-R	
VEGF	

Rituxan Pivotal Trial: Treatment of Patients With Relapsed Lymphoma

McLaughlin et al. J Clin Oncol. (1998) 16:2825

Polymorphisms in CD16 correlate with therapeutic effects of anti-tumor monoclonal antibodies

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

> QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

CD16 ($Fc\gamma RIII$) mediates Herceptin and Rituxan mediate human tumor elimination in nude mice

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

> QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Activating NK receptors - ligands

• Human/mouse CD16-Fc ϵ RI γ/ζ IqG • Human CD2..... **CD58** • Human 2B4 (CD244)-SAP... **CD48** • Human DNAM-1 (CD226)... CD112, CD155 • Mouse PILR β -DAP12..... PILR-L Human NKG2D-DAP10..... MICA/B, ULBP Mouse NKG2D-DAP10/12... RAE-1, H60, MULT1 • Human/mouse NKp46-Fc ϵ RI γ / ζ 2 • Human NKp30-Fc ϵ RI γ / ζ ? • Human NKp44-DAP12..... ? • Mouse NKR-P1c-Fc \in RI γ

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

NKG2D

- C-type lectin-like superfamily
- 1 gene, non-polymorphic, conserved mice humans
- Homodimer expressed on all NK cells, $\gamma\delta$ T cells, and CD8+ T cells
- R in transmembrane associates with D in DAP10 transmembrane

DAP10

- 10 kd homodimer
- Cytoplasmic YINM recruits Grb2 & p85 PI3-kinase

NKG2D ligands in mice and humans

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Many genes Many alleles

NKG2D ligands

- MHC class I-like
 - don't require peptide or β 2-microglobulin
- Bind with nM affinity to NKG2D
- Low levels expressed on healthy tissues
- <u>Induced</u> on virus-infected cells and tumor cells
- <u>Induced</u> by DNA damage
- <u>Elevated</u> in autoimmune diseases

What is the biological role of the NKG2D ligands?

"Danger signals" to alert the immune system to infection

NKG2D on NK cells, $\gamma\delta$ T cells and CD8+ T cells detect NKG2D ligands on abnormal cells

Induction of NKG2D ligands

Thanks D. Raulet Nature 2005

NKG2D ligands (MICA/B) are expressed on many primary human tumors

Lung tumors

Prostate tumors

Ovarian tumors

Colon tumors

Human NK cells kill NK-resistant mouse cells transfected with human NKG2D ligands

NKG2D ligands are expressed on many mouse tumors

Cerwenka, A. Immunity 12:721, 2000

Mouse NK cells kill NK-resistant lymphomas transfected with NKG2D ligands

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Mice reject lymphomas transfected with NKG2D ligands

Rejection mediated by NK cells

NKG2D-RAE-1 interaction overrides "self class I-inhibition" *in vivo*

NK Cells Reject RAE-1+ MHC class I+ Tumors!

Class I⁺ tumors grow *in vivo* RAE-1+ Class I⁺ tumors are rejected RAE-1+ tumors in NK-depleted mice grow *in vivo* QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Increased 3-MCA induced tumors in mice treated with anti-NKG2D mAb

If NK cells kill tumors expressing NKG2D ligands - how do the tumors survive?

Shed or secreted NKG2D ligands in the sera of cancer patients

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

NKG2D and Cancer

- Tumors frequently over-express NKG2D ligands
- DNA-damage induces expression of NKG2D ligands on tumors
- NK cells eliminate tumors expressing NKG2D ligands
- NKG2D ligands on tumors can (sometimes) augment tumor antigen-specific CD8⁺ CTL
- Tumors shed or secrete soluble NKG2D ligands to act as decoys - immune evasion