

# A Focus on Breast Cancer: Metastatic Breast Cancer

#### Daniel G. Stover, MD

Assistant Professor, Medical Oncology Department of Biomedical Informatics Pelotonia Institute for ImmunoOncology Ohio State University Comprehensive Cancer Center

#### #LearnACI



### Disclosures

- Consulting Fees: Novartis
- I will be discussing non-FDA approved indications during my presentation.





# Agenda/Overview

- The winding road of immune checkpoint inhibitors in metastatic breast cancers
- Immune checkpoint inhibitor biomarkers beyond PDL1
  - High TMB, MSI-h/dMMR
- The future of immunotherapy for MBC





# Agenda/Overview

- The winding road of immune checkpoint inhibitors in metastatic breast cancers
- Immune checkpoint inhibitor biomarkers beyond PDL1
  - High TMB, MSI-h/dMMR
- The future of immunotherapy for MBC





#### FDA-Approved ICIs in Metastatic Breast Cancer

**Breast Cancer Specific** 

- Atezolizumab\* + Nab-Paclitaxel in 1<sup>st</sup> line, metastatic TNBC
- Pembrolizumab + Chemotherapy (nab-paclitaxel, paclitaxel or gemcitabine/carboplatin) in 1<sup>st</sup> line, metastatic TNBC

#### Not Breast Cancer Specific

- **Pembrolizumab**\* in TMB-High (≥ 10 mutations/megabase)
- **Pembrolizumab\*** in MSI-High or dMMR tumors

© 2021–2022 Society for Immunctherapy of Concer



### Reconciling metastatic TNBC ICI data

|                               | KEYNOTE355                                                                            | IMPASSION130                           | IMPASSION131                       |
|-------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|
| n (PD-L1+)                    | 847 (332; 38%)<br>PD-L1 22C3 CPS≥10                                                   | 902 (369; 41%)<br>PD-L1 SP142 ≥1%      | 943 (292; 45%)<br>PD-L1 SP142 ≥1%  |
| Treatment                     | (Paclitaxel or nab-paclitaxel<br>or gemcitabine+carboplatin)<br>+ pembrolizumab (2:1) | Nab-paclitaxel +<br>atezolizumab (1:1) | Paclitaxel + atezolizumab<br>(2:1) |
| Proportion <i>de novo</i> MBC | 30%                                                                                   | 37%                                    | 28-30%                             |
| Prior taxane                  | 45%                                                                                   | 51%                                    | 51-53%                             |
| PD-L1+ PFS                    | 5.6mo vs. 9.7mo<br>HR 0.65<br>P=0.0012                                                | 5mo vs. 7.5mo<br>HR 0.62<br>P<0.0001   | 5.7mo vs. 6mo<br>HR 0.82<br>p=0.20 |
| PD-L1+ OS benefit?            | In PD-L1+ yes                                                                         | In PD-L1+ yes; ITT no                  | No                                 |

#LearnACI

© 2021–2022 Society for Immunotherapy of Cancer

Adapted from Hope Rugo, ESMO 2020



#LearnAC

© 2021–2022 Society for Immunotherapy of Cancer

#### Advances in Cancer Immunotherapy<sup>TM</sup>

### **Reconciling metastatic TNBC ICI data IMPASSION130: PFS**

• Nab-Paclitaxel: Positive study



### **IMPASSION131: PFS**

Paclitaxel: Negative study



Schmid NEJM 2018; Miles Ann Onc 2021



### Reconciling metastatic TNBC ICI data IMPASSION130: OS (PD-L1+) IMPASSION131: OS (PD-L1+)



© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

Emens Ann Onc 2021; Miles Ann Onc 2021



# **Reconciling metastatic TNBC ICI data: KEYNOTE-355**

- 1L, mTNBC, randomized 2:1 (n = 847)
- Chemotherapy = Nab-Paclitaxel, Paclitaxel or Gemcitabine/Carboplatin (AUC2)





© 2021–2022 Society for Immunotherapy of Cancer



### Reconciling metastatic TNBC ICI data: KEYNOTE-355

| ІТТ      | <b>On-study chemotherapy</b><br>Nab-paclitaxel<br>Paclitaxel | 268<br>114 | 7·5<br>8·0 | 5·4<br>3·8    |                      | 0·69 (0·51 to 0·93)<br>0·57 (0·35 to 0·93) |
|----------|--------------------------------------------------------------|------------|------------|---------------|----------------------|--------------------------------------------|
|          | Gemcitabine-carboplatin                                      | 465        | 7·4        | 7.4           | _• <u> </u>          | 0·93 (0·74 to 1·16)                        |
|          | On-study chemotherapy                                        |            |            |               |                      |                                            |
| CPS > 10 | Nab-paclitaxel                                               | 99         | 9.9        | 5.5           | _ <b>—</b>           | 0·57 (0·34 to 0·95)                        |
| 0.0110   | Paclitaxel                                                   | 44         | 9.6        | 3.6           | <b>→</b>             | 0·33 (0·14 to 0·76)                        |
|          | Gemcitabine-carboplatin                                      | 180        | 8.0        | 7.2           | <b>→</b>             | 0·77 (0·53 to 1·11)                        |
|          |                                                              |            |            |               |                      | 5 2.0 2.5                                  |
|          |                                                              |            |            |               | ← —                  | →                                          |
|          |                                                              |            |            |               | Favours Favou        | Irs                                        |
|          |                                                              |            |            | pembrolizumal | b-chemotherapy place | oo-chemotherapy                            |



### PD-1/L1 Expression in Breast Cancer

|                            | Ventana PD-L1 (SP142                          | )                        | Dako PD-L1 (22C3)                                                                                                              |
|----------------------------|-----------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Approved for Companion Use | Atezolizumab in mTNBC Pembrolizumab in mTNBC  |                          | Pembrolizumab in mTNBC                                                                                                         |
| PD-L1 Positive Definition  | <b>≥ 1% on IC</b><br>Tumor area, any staining |                          | D Combined Positive Score (CPS)<br>[% IC with any PD-L1 +<br>% TC with membranous PD-L1]<br>Total invasive TC IC = timer cells |
| 95 Farly Stage TNBC        | SP142 (> 1%) vs CPS > 1%                      | SP142 (> 1%) vs CPS > 5% | SP142 (> 1%) vs CPS > 10%                                                                                                      |





### PD-1/L1 Expression in Breast Cancer





Double positive: SP142 IC  $\geq$  1%, 22C3 CPS  $\geq$  1; single positive: SP142 IC < 1%, 22C3 CPS  $\geq$  1; double negative: SP142 IC < 1%, 22C3 CPS < 1. HR adjusted for prior taxanes, presence of liver metastases, age and ECOG PS.

Rugo et al. Abstract 6571 IMpassion130 PD-L1 IHC https://bit.ly/300mOqz



### PD-1/L1 Expression in Breast Cancer

#### • The Specimen Site Matters for PD-L1+

- Primary breast tumors > metastatic tumors
  - Metastatic tumors have fewer ICs, decrease immune activation markers
- Varying PD-L1+ among metastatic sites
  - Highest in lung, soft tissue, lymph nodes
  - Lowest in liver (*"immunologic graveyard"*)
  - Limited use in bone [PD-L1 assays are NOT validated on decalcified bone] and FNA aspirates





### Immune vs. Other Biomarkers



#### **Take Home Points**

- PD-L1+ benefit across studies
- Distribution varies within subtypes

#### • PD-L1+ tumors present

- Across immune phenotypes
- Across molecular subtypes

© 2021–2022 Society for Immunotherapy of Cancer

Peter Schmid; SABCS 2021



### Reconciling metastatic TNBC ICI data

|                               | KEYNOTE355                                                                            | IMPASSION130                           | IMPASSION131                       |
|-------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|
| n (PD-L1+)                    | 847 (332; 38%)<br>PD-L1 22C3 CPS≥10                                                   | 902 (369; 41%)<br>PD-L1 SP142 ≥1%      | 943 (292; 45%)<br>PD-L1 SP142 ≥1%  |
| Treatment                     | (Paclitaxel or nab-paclitaxel<br>or gemcitabine+carboplatin)<br>+ pembrolizumab (2:1) | Nab-paclitaxel +<br>atezolizumab (1:1) | Paclitaxel + atezolizumab<br>(2:1) |
| Proportion <i>de novo</i> MBC | 30%                                                                                   | 37%                                    | 28-30%                             |
| Prior taxane                  | 45%                                                                                   | 51%                                    | 51-53%                             |
| PD-L1+ PFS                    | 5.6mo vs. 9.7mo<br>HR 0.65<br>P=0.0012                                                | 5mo vs. 7.5mo<br>HR 0.62<br>P<0.0001   | 5.7mo vs. 6mo<br>HR 0.82<br>p=0.20 |
| PD-L1+ OS benefit?            | In PD-L1+ yes                                                                         | In PD-L1+ yes; ITT no                  | No                                 |

#LearnACI

© 2021–2022 Society for Immunotherapy of Cancer

Adapted from Hope Rugo, ESMO 2020



# Agenda/Overview

- The winding road of immune checkpoint inhibitors in metastatic breast cancers
- Immune checkpoint inhibitor biomarkers beyond PDL1
  - High TMB, MSI-h/dMMR
- The future of immunotherapy for MBC





#### High TMB: Is it really a biomarker for breast cancer?

|                        | Foundation Medicine database<br>N=5739 samples |       |                     |          |                 | •           |          |           |
|------------------------|------------------------------------------------|-------|---------------------|----------|-----------------|-------------|----------|-----------|
|                        | ER+,<br>HER2-                                  | HER2+ | Triple-<br>negative | Lobular  | Inflammatory    | Metaplastic | Mucinous | Papillary |
|                        |                                                |       |                     | Tumor Mu | tational Burden | (TMB)       |          |           |
| Median TMB<br>(mut/Mb) | 2.6                                            | 3.5   | 3.5                 | 2.6      | 2.5             | 2.6         | 1.7      | 3.5       |
| TMB ≥ 10               | 7%                                             | 9%    | 7%                  | 15%      | 10%             | 5%          | 6%       | 0%        |
| TMB ≥ 20               | 2%                                             | 2%    | 2%                  | 6%       | 3%              | 2%          | 3%       | 0%        |



Israel, SABCS 2020 | Sokol, SABCS 2020





Whe

#### Advances in Cancer Immunotherapy™

#### High TMB: Is it really a biomarker for breast cancer?

| ancer better controlled ( <b>impro</b> | ved response rate)?                                                      | VFC*                      |
|----------------------------------------|--------------------------------------------------------------------------|---------------------------|
| n Pembrolizumab (Keytruda)             | was used in patients with high mut                                       | ational burden vs low     |
| # Patients on Trial                    | 233 patients in efficacy cohort (5/2                                     | 33 breast cancer)         |
|                                        | mutations, defined as <u>10 mutations</u><br>(~5% of all breast cancers) | <u>s/megabase or more</u> |
| Patient Population                     | Previously treated, solid tumors the                                     | at had a high number of   |
| <b>Clinical Trial Name</b>             | KEYNOTE-158                                                              |                           |

| Was cancer better controlled (improved response rate)? | YES*                  |
|--------------------------------------------------------|-----------------------|
|                                                        | (29% vs 6%)           |
| Did patients live longer (improved OS)?                | NO                    |
|                                                        | (11.7 vs 12.8 months) |

**#LearnACI** 18 © 2021–2022 Society for Immunotherapy of Cancer From Maggie Gatti-Mays

Thomas et al. Oncolmmunology. 2018.; Barroso-Sousa et al. Ann Onc. 2020.; Marabelle et al. 2020. Lancet Oncoll Emens et al. JITC. 2021.



### High TMB: Is it really a biomarker for breast cancer?

- TAPUR Study (Ph2 basket study)
  - 28 patients with metastatic breast cancer [TNBC = 13 (46%), HR+/HER2- = 12 (43%)]
  - TMB: median 13 mut/Mb (range 9 to 37 mut/Mb); PD-L1 status unknown
  - Disease Control Rate 37%, ORR 21% with median PFS = 10.6 weeks





R

Ε

G

S

Т

R

Α

Т

0

Ν

# High TMB: Is it really a biomarker for breast cancer?

#### **Eligibility:**

- Metastatic HER2- breast cancer
- 0-3 lines of prior chemotherapy
- TMB ≥ 9 mut/Mb as assessed by a CLIA-approved cancer-gene panel
- Measurable disease by RECIST 1.1
- Mandatory research biopsy if tumor safely accessible
- No prior checkpoint inhibition



#### **Duration of therapy**

Treatment until progression, unacceptable toxicity or up to 24 months

> Tumor assessment: Imaging will be performed at baseline and Q6W for 24 weeks, and then Q9W.

**#LearnACI** © 2021–2022 Society for Immunotherapy of Cancer

Barroso-Sousa, et al SABCS 2021



### High TMB: Is it <u>really</u> a biomarker for breast cancer? NIMBUS: Objective Response Rate

| Confirmed ORR, n (%) | 5 (16.7%)  |
|----------------------|------------|
| CR, n (%)            | 0          |
| PR, n (%)            | 5 (16.7%)  |
| SD, n (%)            | 6 (20%)    |
| PD, n (%)            | 16 (53.3%) |
| Not evaluable, n (%) | 3 (10%)    |
| CBR, n (%)           | 5 (16.7%)  |



© 2021–2022 Society for Immunotherapy of Cancer

#LearnAC

Barroso-Sousa, et al SABCS 2021 5 8 18 23 17 3 6 26 13 10 19 15 27 12 25 22 16 30 2 31 9 28 21 1 14 11 7



#LearnAC

22 © 2021–2022 Society for Immunotherapy of Cancer

#### Advances in Cancer Immunotherapy<sup>TM</sup>

#### **MSI-H**: Is it <u>really</u> a biomarker for breast cancer?

Therapeutic Considerations in Microsatellite Instability High (MSI- H) Breast Cancers (BC) Identified by Comprehensive Genomic Profiling (CGP)

- FoundationMedicine: 29,160 breast cancer cases
  - MSI status determined at 95-114 loci
- **102 MSI-H** (<u>0.35%</u>) <u>RARE</u>
  - Enriched among gBRCA1/2 mutation cari
  - Tend to have high TMB







#### **MSI-H**: Is it <u>really</u> a biomarker for breast cancer?

| <b>Clinical Trial Name</b> | KEYNOTE-158                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------|
| Patient Population         | <u>Previously treated</u> , solid tumors that<br>histologically/cytologically confirmed MSI-H/dMMR |
| # Patients on Trial        | 233 patients in efficacy cohort (5/233 breast cancer)                                              |
| FDA Approval Status        | Accelerated Approval (2020)                                                                        |
| When Pembrolizumab (       | Keytruda) was used in patients with MSI-H/dMMR                                                     |
| Response rate              | 34.3%                                                                                              |
| Progression-free survival  | 4.1 mo                                                                                             |
| Overall survival           | 23.1 mo                                                                                            |



Thomas et al. Oncolmmunology. 2018.; Barroso-Sousa et al. Ann Onc. 2020.; Marabelle et al. 2020. Lancet Oncoll Emens et al. JITC. 2021.

\*statistically significant \*\* Few breast cancer patients included



# Agenda/Overview

- The winding road of immune checkpoint inhibitors in metastatic breast cancers
- Immune checkpoint inhibitor biomarkers beyond PDL1
  - High TMB, MSI-h/dMMR

#### The future of immunotherapy for MBC





### Will VEGF agents return? FEATURE-C-PLUS

- Famitinib (anti-VEGFR2) + camrelizumab (anti-PD1) + nab-paclitaxel
- Phase 2 trial (n=48)
- ORR: 81.3% (10.9% CR)
- PFS: 60.2% at 9 mo





### What about non-TNBC MBC subsets? (HER2+ +/- ER+)

- Lower ICI response rates
  - Distinct TIME
- Combinations or sequencing therapy to activate a 'cold' TIME
  - CDK4/6i induction of IFN
  - Leveraging HER2 mAb ADCC
- Host factors?

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI



Gatti-Mays et al npj Breast Cancer 2019



### Conclusions

- The winding road of immune checkpoint inhibitors in metastatic breast cancers
  - Only breast-specific ICI approval for MBC is pembro for TNBC that is PD-L1 22C3 CPS≥10
- Immune checkpoint inhibitor biomarkers beyond PDL1
  - High TMB, MSI-h/dMMR: Pan-cancer approvals rare but more than we think?
- The future of immunotherapy for MBC
  - Great interest in modulating the TIME where will this go?





# Thank you!

