

香港中文大學 The Chinese University of Hong Kong

香港中文大學醫學院 **Faculty of Medicine** The Chinese University of Hong Kong

Biomarker Updates

Stephen L. Chan MD, FRCP

Professor, Department of Clinical Oncology, The Chinese University of Hong Kong

Copyright © 2017. All Rights Reserved. Faculty of Medicine, The Chinese University of Hong Kong

Disclosures

- Consulting Fees: Astra-Zeneca, MSD, Eisai, BMS
- Fees for Non CE Services: Bayer, Astra-Zeneca, Eisai, Roche, MSD
- Contracted Research: MSD, Bayer, Eisai, Ipsen, SIRTEX

Outline (25 min)

- Introduction of different biomarkers for IO treatment
- Updates of biomarker data for IO
 - Colorectal cancers
 - Gastroesophageal adenocarcinoma
 - Hepatocellular carcinoma
- Conclusions

香港中丈大學 The Chinese University of Hong Kong

Background

Why do we need biomarker?

Anti-PD1 Antibody

• Potentially deep and durable response

香港中文大學 The Chinese University of Hong Kong

Biomarkers

PD-L1

PD-L1

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer

L. Gandhi, D. Rodríguez-Abreu, S. Gadgeel, E. Esteban, E. Felip, F. De Angelis, M. Domine, P. Clingan, M.J. Hochmair, S.F. Powell, S.Y.-S. Cheng, H.G. Bischoff, N. Peled, F. Grossi, R.R. Jennens, M. Reck, R. Hui, E.B. Garon, M. Boyer, B. Rubio-Viqueira, S. Novello, T. Kurata, J.E. Gray, J. Vida, Z. Wei, J. Yang, H. Raftopoulos, M.C. Pietanza, and M.C. Garassino, for the KEYNOTE-189 Investigators*

KEYNOTE-189 phase 3 trial

Gandhi L et al. N Engl J Med. 2018; 378(22):2078-2092

Pembrolizumab (anti-PD-1) PD-L1 clone 22C3

Tecentriq"

(atezolizumab) Injection

1 vial

Nivolumab (anti-PD-1) PD-L1 clone 28-8

Dako Autostainer Link-48 EnVision FLEX

Durvalumab (anti-PD-L1) PD-L1 clone SP263

Ventana BenchMark Ultra OptiView

Non-small cell lung carcinoma (n=713)

Different staining patterns of PDL1

Diffuse and strong membranous staining among TUMOR CELLS

Focal membranous staining among TUMOR-INFILTRATING LYMPHOID CELLS

Computation of PDL1 in tissues

Tumor Proportion Score (TPS)

The percentage of PD-L1 expressing tumor cells (partial or complete membrane staining) relative to total number of tumor cells. This scoring method is used for NSCLC.

 $TPS = \frac{\# PD-L1 \text{ positive tumor cells}}{Total \#viable \text{ tumor cells}} X 100$

Combined Positive Score (CPS)

Measures the number of PD-L1 staining cells, <u>including</u> tumor cells, lymphocytes, and macrophages, divided by the total number of viable tumor cells multiplied by 100

$$CPS = \frac{\# PD-L1 \ staining \ cells}{Total \ \#viable \ tumor \ cells} X \ 100$$

CPS score is used more frequently in GI cancers (e.g. GEJ caners)

香港中文大學 The Chinese University of Hong Kong

Biomarkers

MSI-H/MMR/TMB

MSI-H Phenotype Confers Responsiveness to PD-1 Inhibition Independent of Tumor Type¹

Adapted by permission from Macmillan Publishers Ltd: Pardoll DM. Nat Rev Cancer. 2012;12(4):252-264. Copyright 2012.

- MSI-H/dMMR tumors are characterized by hypermutation, resulting in:
 - 10–50 times more tumor-specific neoantigens than MSS tumors³
 - High level of TILs and an active T helper 1 cell/cytotoxic T lymphocyte (TH1/CTL) environment³
 - High expression of checkpoint molecules, such as PD-1, PD-L1, CTLA-4, LAG-3, and IDO^3

1. Le DT et al. Science. 2017; 357(6349):409-413. 2. Pardoll DM. Nat Rev Cancer. 2012;12(4):252-264. 3. Llosa NJ et al. Cancer Discov. 2015;5(1):43-51.

Adapted by permission from Macmillan Publishers Ltd: Partell DM Nat Rev Cancer. 2012;12(4):252–264. Copyright 2012. 香港中文大學 The Chinese University of Hong Kong

MSI-H/dMMR immunogenic phenotype—due to the tumor's genotype—renders tumors susceptible when treated with ICIs ¹

Science

REPORTS

Cite as: D. T. Le et al., Science 10.1126/science.aan6733 (2017).

Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade

Dung T. Le,^{1,2,3} Jennifer N. Durham,^{1,2,3,4} Kellie N. Smith,^{1,2,4} Hao Wang,^{3,6} Bjarne R. Bartlett,^{2,4,4} Laveet K. Aulakh,^{2,4} Steve Lu,^{3,4} Holy Kemberling,³ Cara Wilt,³ Brandon S. Luber,³ Fay Wong,^{2,4} Nilofer S. Azad,^{1,3} Bgnieszka A. Rucki,^{1,5} Dan Laheru,³ Ross Donehower,³ Atif Zaheer,⁵ George A. Fisher,⁶ Todd S. Crocenzi,⁷ James J. Lee,⁴ Tim F. Greten,⁴ Austin G. Duffy,⁶ Kristen K. Ciombor,¹⁰ Aleksandra D. Eyring,¹¹ Bao H. Lam,¹¹ Andrew Joe,¹³ S. Peter Kang,¹¹ Matthias Holdhoff,³ Ludmila Danilova,^{1,3} Leslie Cope,¹³ Christian Meyer,⁵ Shibin Zhou,^{1,3,4} Richard M. Goldberg,¹² Deborah K. Armstrong,³ Katherine M. Bever,³ Amanda N. Fader,¹³ Janis Taube,^{1,3} Franck Housseau,^{1,3} David Spetzler,¹⁴ Nianqing Xiao,¹⁴ Drew M. Pardoll,^{1,3} Nickolas Papadopoulos,^{3,4} Kenneth W. Kinzler,^{3,4} James R. Eshleman,¹⁵ Bert Vogelstein,^{1,3,4} Robert A. Anders,^{1,4,3,1} Luis A. Diaz Jr,^{1,2,3} |[‡]

Stage IV dMMR tumor (n=86)

53% Objective response 77% Disease control

Methods to detect MSI-H/dMMR

	Tests						
Method of measurement	Nucleic-acid based (NGS; PCR)	IHC					
Description	Panel of microsatellite markers to detect size shifts in different loci	Test to determine the presence of MMR proteins					
Patient sample type	Tumor tissue	Tumor tissue					
Reagents to targets	 Probes to the following: BAT25, BAT26, NR21, NR24, Mono27 or BAT25, BAT26, DI5S346, DI2S123, DI17S250 	Antibodies to MLH1/MSH2/MSH6/PMS2					
Results	≥2 of 5 loci differ in size from corresponding normal loci	Any 1 (or more) of 4 proteins absent					
Biological feature	MSI-H	dMMR					

Tumor mutation burden

- TMB correlates with overall neoantigen load¹
 - TMB is technically easier and less expensive than measuring neoantigen load
- TMB is defined as the total number of mutations (changes) found in the DNA of cancer cells²
 - Tumors that have a high number of mutations appear to be more likely to respond to certain types of immunotherapy
 - TMB is being used as a type of biomarker
- While the tumor may be suppressing the immune response locally, reactivation of antitumor immune activity using ICI may improve cancer cell clearance and clinical responses³

MSI-H Tumors Tend to be TMB-H, But Not All TMB-H Tumors Are MSI-H

1. Vanderwalde A et al. Cancer Med. 2018;7(3):746–756.

Image reproduced with permission from Vanderwalde A et al. Cancer Med. 2018;7(3):746–756. https://creativecommons.org/licenses/by/4.0/.

1. <u>Fancello L et al. J Immunother Cancer. 2019;7:1-13.</u> 2. National Cancer Institute. Dictionary of Terms—tumor mutation burden. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tumor-mutational-burden. Accessed August 19, 2020. 3. <u>Arora S et al. Adv Ther.</u> 2019;36(10):2638–2678. 4. <u>Büttner R et al. ESMO Open. 2019;4(1):e000442</u>. Image reproduced with permission from Arora S et al. *Adv Ther.* 2019;36(10):2638–2678.

Assays of TMB

Table 2 Examples of NGS gene panels in development or currently available to assess TMB								
Ctatua	Test name	Number	Coverage	Cono voriento	Sample			
Status	lest name	of genes	(MD)^	Gene variants	туре			
FDA-approved or authorised diagnostic assays†	MSK-IMPACT ^{15 56 68}	468	1.5	SNVs, indels, rearrangements/ fusions, CNAs, parallel analysis of genomic signatures (eg, TMB and dMMR/MSI)	FFPE			
	Foundation Medicine FoundationOne CDx ^{14 49}	324	0.8	SNVs, indels, CNAs, select rearrangements, parallel analysis of genomic signatures (eg, TMB and dMMR/MSI)	FFPE			
Commercial assays for	Caris Molecular Intelligence ¹³²	592	1.4	Somatic missense mutations	FFPE			
research use only	Illumina TruSight 500 gene panel ¹³³	500	2.0	SNVs and indels	FFPE			
	Thermo Fisher Scientific Oncomine Tumor Mutation Load Assay ⁷⁷	409	1.7	SNVs	FFPE			
	NEO New Oncology NEOplus v2 RUO ¹³⁴	>340	1.1	SNVs, indels, fusions, CNAs, parallel analysis of TMB, MSI, and driver mutations	FFPE			
	Foundation Medicine FoundationOne ⁵⁰	315	1.1	SNVs, indels, CNAs, select gene rearrangements, genomic signatures for MSI and TMB	FFPE			
	Foundation Medicine bTMB assay ^{86 122}	394	1.1	SNVs	Blood			
	TruSight Tumor 170 ¹³⁵	170	0.5	Fusions, splice variants, SNVs, indels, amplifications	FFPE			
	QIAGEN GeneRead DNAseq Comprehensive Cancer Panel ⁹⁷	160	0.7	SNVs, CNAs, indels, and fusions	FFPE			
	NEO New Oncology NEOplus ^{105 136}	94		SNVs, indels, CNAs, rearrangements, and fusions	FFPE			

香港中文大學 The Chinese University of Hong Kong

Biomarker in different cancer types

Colorectal cancer

Overlap of MSI and TMB in Colorectal Cancer

Presence of TMB-H, MSI-H, and PD-L1 Expression in

CRC^{1,a}

^aPercentages are based on a total of 4,186 patients with MSI-H and/or high TMB and/or PD-L1-positive status. 1. <u>Luchini C et al. *Ann Oncol.* 2019;30:1232–1243.</u> 2. Salem ME et al. Presented at ASCO 2018; Abstract 3572.

- In a study of 1,057 MSI-H tumors, MSI-H CRCs carried the highest TMB compared with MSI-H endometrial cancers and other MSI-H solid tumors²
 - MSH2 and/or MSH6 alterations were associated with a significantly higher TMB compared with MLH1 and/or PMS2 alterations across CRC and other cancer types²

TMB in MLH1, PMS2, MSH2, and MSH6-altered Cohorts in CRC²

			C	RC	P<(0.0001
	Level	Number	Mean	Std Error	Lower 95%	Upper 95%
N a	MLH1 ltered	182	34.736	2.082	30.646	38.827
N a	√SH2 ltered	53	52.528	3.859	44.949	60.108
N a	/ISH6 ltered	128	46.406	2.483	41.529	51.284
F al	PMS2 ltered	187	34.583	2.054	30.548	38.618

Utility of MSI-H and dMMR in Clinical Practice

Prognostic Value

Predictive Value Improved Sensitivity to Immunotherapy

- MSI status is a prognostic marker in early stage CRC¹
 - An analysis of data from 17 different trials in the ACCENT (Adjuvant Colon Cancer End Points) database investigated how MSI status affected outcome in patients with stage II or III CRC undergoing surgery alone or surgery followed by 5-FU based adjuvant treatment³
 - Results showed that outcomes with surgery alone were better for the patients with MSI-H tumors than for those with MSS tumors³

1. Benatti P et al. Clinical Cancer Res. 2005;11(23):8332–8340. 2. Gelsomino F et al. Cancer Treat Rev. 2016;51:19–26. 3. Sargent DJ et al. J Clin Oncol. 2014;32(15)(suppl).

Utility of MSI-H and dMMR in Clinical Practice

Prognostic Value

- MSI-H/dMMR is biologically interrelated to an increase in neoantigens. MSI-H/dMMR tumors are characterized by upregulation of inhibitory checkpoint inhibitors and correlates positively to immunotherapy response^{1,2}
- Brief efficacy results from proof of concept trial
 - Le et al published the results of KEYNOTE-016, a Phase 2 study in 32 patients with stage IV colorectal cancer (dMMR, n=11; MMR-proficient, n=21) receiving pembrolizumab therapy. The objective response rates were 40% for the dMMR cohort and 0% for the MMR-proficient cohort. Median PFS and OS were not reached in the dMMR cohort but were 2.2 and 5.0 months in the MMR-proficient cohort³
- Other clinical trials have evaluated PD-1 inhibitors in patients with MSI-H/dMMR advanced colorectal cancer⁴⁻⁶

Predictive Value Improved Sensitivity to Immunotherapy

OS in patients with stage IV CRC who received pembrolizumab therapy¹

Trial Identifier	Assay Details	Treatment Arm	Phase
KEYNOTE-164 ⁴	MSI and/or MMR testing by PCR or IHC; local testing	Pembrolizumab	2
KEYNOTE-177 ⁵	MSI and/or MMR testing by PCR or IHC; local testing	Pembrolizumab	3
Checkmate-142 ⁶	Testing for MSI-H by an accredited lab	Nivolumab or nivolumab/ipilimumab	1/2

Benatti P et al. Clinical Cancer Res. 2005;11(23):8332–8340. 2. Gelsomino F et al. Cancer Treat Rev. 2016;51:19–26. 3. Le DT et al. N Engl J Med. 2015;372(26):2509–2520. 4. ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/NCT02460198. 5. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02563002. 6. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02563002. 6. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT0260188

Overview of MMR/MSI testing in guidelines

NCCN guidelines

Guideline	Testing	Therapy
Colon Cancer ¹	Universal MMR ^a or MSI ^a testing is recommended in all newly diagnosed patients with colon cancer.	Pembrolizumab, nivolumab, or nivolumab plus ipilimumab are recommended as treatment options for patients with metastatic MSI-H/dMMR colorectal cancer
Rectal Cancer ²	Universal MMR ^a or MSI ^a testing is recommended in all newly diagnosed patients with rectal cancer.	Pembrolizumab, nivolumab, or nivolumab plus ipilimumab are recommended as treatment options for patients with metastatic MSI-H/dMMR colorectal cancer.

ESMO Recommendation: MSI Testing

- MSI testing in the metastatic disease setting can assist clinicians in genetic counseling¹
- MSI testing has strong predictive value for the use of ICIs in the treatment of patients with mCRC¹
- MSI testing is recommended by ESMO for all CRC-related cancers²

1. <u>Van Cutsem E et al. Ann Oncol. 2016;27(8):1386–1422</u>. 2. Microsatellite Instability – Defective DNA Mismatch Repair: ESMO Biomarker Factsheet. https://oncologypro.esmo.org/Education-Library/Factsheets-on-Biomarkers/Microsatellite-Instability-Defective-DNA-Mismatch-Repair. Accessed June 19, 2019

香港中文大學 The Chinese University of Hong Kong

Biomarker in different cancer types

Gastroesophageal adenocarcinomas

KN-061: High CPS ≥10 is required for benefits of monotherapy (Data cutoff date: October 26, 2017)¹

1. Shitara K et al. Lancet. 2018;392(10142):123-133.

Lower cut-off of CPS score seem to required benefits of chemo + Anti-PD1

Figure S1: Subgroup analysis by PD-L1 CPS subpopulations

A Overall survival

Devulation*	Median over mor	Unst	Interaction test			
Population	Nivolumab plus chemotherapy	Chemotherapy alone	fc	p value		
Overall (N=1581)	13·8	11.6	+		0.79 (0.70-0.89)	
PD-L1 CPS <1 (n=265)	13.1	12.5			0.92 (0.70–1.23)	
PD-L1 CPS ≥1 (n=1296)	14.0	11.3	-		0.76 (0.67–0.87)	0.2041
PD-L1 CPS <5 (n=606)	12.4	12.3			0·94 (0·78–1·13)	
PD-L1 CPS ≥5 (n=955)	14-4	11-1	-		0.70 (0.60-0.81)	0.0107+
		Nivolumah nive ch	0.5 1	2 Chemotheran	4 4	

B Progression-free survival

Bonulation*	Median progress mor	Unstratified hazard ratio				Interaction test		
Population	Nivolumab plus chemotherapy	Chemotherapy alone	for progression/death (95% CI)				p value	
Overall (N=1581)	7.7	6.9					0.77 (0.68–0.87)	
PD-L1 CPS <1 (n=265)	8.7	8.1		•			0.93 (0.69–1.26)	
PD-L1 CPS ≥1 (n=1296)	7.5	6.9					0.75 (0.65-0.85)	0.1391†
PD-L1 CPS <5 (n=606)	7.5	8.2	_	+			0.93 (0.76–1.12)	
PD-L1 CPS ≥5 (n=955)	7.7	6·1	-•				0.69 (0.59–0.80)	0.0073+
			0.5	1	2	4		

Nivolumab plus chemotherapy
Chemotherapy alone
better
better
better

Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer

Seung Tae Kim^{1,8}, Razvan Cristescu^{1,2,8}, Adam J. Bass^{3,8}, Kyoung-Mee Kim^{1,8}, Justin I. Odegaard^{5,8}, Kyung Kim^{1,1}, Xiao Qiao Liu^{1,0}², Xinwei Sher^{1,0}², Hun Jung², Mijin Lee¹, Sujin Lee¹, Se Hoon Park¹, Joon Oh Park¹, Young Suk Park¹, Ho Yeong Lim¹, Hyuk Lee⁶, Mingew Choi⁷, AmirAli Talasaz⁵, Peter Soonmo Kang², Jonathan Cheng², Andrey Loboda^{5,2}, Jeeyun Lee^{5,1}* and Won Ki Kang^{1*}

Three predictors for anti-PD1

- High CPS
- EBV +
- MSI-H

Overview of Biomarker Testing in Gastric Cancer: NCCN, ESMO, JSMO, and CSCO Guidelines

Biomarker	NCCN ¹	ESMO ²	JSMO ³	CSCO⁴	Recommendations
PD-L1	Х				May be considered for locally advanced, recurrent, or metastatic gastric carcinoma in patients who are candidates for treatment with PD-1 inhibitors (category 2A) ^{1,a}
HER2	Х	X	X	Х	For patients with inoperable locally advanced, recurrent, or metastatic AC of the stomach for whom trastuzumab therapy is being considered (category 2A) ^{1,b} Used to select patients with metastatic disease for treatment with a trastuzumab-containing regimen [I, A] ² HER2 testing is strongly recommended in all patients who will receive chemotherapy for unresectable/metastatic gastric cancer ³ All cases of gastric AC should undergo HER2 assessment (Recommendation level I - universally accepted measures with clear indications for diagnosis and treatment; Evidence level 1A - uniform consensus reached [support level: ≥80%]) ⁴
MSI/MMR	х			х	Universal testing for MSI by PCR or MMR by IHC should be performed for all newly diagnosed gastric cancers (category 2A) ^{1,c} MSI/MMR status may help to screen gastric cancer patients favorable for preoperative chemotherapy (Recommendation level III - lack of strong evidence-based data, however, there is satisfactory consensus; Evidence level III - no consensus reached and has major disagreement [support level: < 60%]) ⁴
ТМВ					No specific recommendations.

1. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Gastric Cancer V4.2021 © National Comprehensive Cancer Network, Inc. 2021. All rights reserved.

Accessed September 13, 2021. To view the most recent and complete version of the guideline, go to NCCN.org. 2. <u>Smyth EC et al. Ann Oncol. 2016;27(suppl 5):v38–v49.</u> 3. Japanese Gastric Cancer Association.

Japanese gastric cancer treatment guidelines 2018 (5th edition). *Gastric Cancer*. 2020 Feb 14 [E-pub ahead of print]. 4. Wang F-H et al. Cancer Commun (Lond). 2019;39(1):10. 5. Mosele F et al. Ann Oncol. 2020; https://www.annalsofoncology.org/article/S0923-7534(20)39971-3/fulltext [in press].

香港中文大學 The Chinese University of Hong Kong

Biomarker in different cancer types

Hepatocellular carcinomas

HEPATOLOGY

HEPATOLOGY, VOL. 64, NO. 6, 2016

HEPATOBILIARY MALIGNANCIES

Programmed Death Ligand 1 Expression in Hepatocellular Carcinoma: Relationship With Clinical and Pathological Features

Julien Calderaro,¹⁻³ Benoit Rousseau,²⁻⁴ Giuliana Amaddeo,^{2,3,5} Marion Mercey,² Cécile Charpy,¹ Charlotte Costentin,⁵ Alain Luciani,^{2,3,6} Elie-Serge Zafrani,¹ Alexis Laurent,⁷ Daniel Azoulay,^{3,2} Fouad Lafdil,^{2,3} and Jean-Michel Pawlotsky^{2,3,8}

199 HCC patients, 217 tumors PD-L1 clone E1L3N

Positive PD-L1 in Inflammatory Cells

Calderaro J et al. Hepatology. 2016;64(6):2038-2046

Positive PD-L1 in Tumour Cells

Research Article Hepatic and Biliary Cancer

JOURNAL **OF HEPATOLOGY**

Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma

Bruno Sangro^{1,*,†}, Ignacio Melero^{2,†}, Samir Wadhawan^{3,‡}, Richard S. Finn⁴, Ghassan K. Abou-Alfa^{5,6}, Ann-Lii Cheng⁷, Thomas Yau⁸, Junji Furuse⁹, Joong-Won Park¹⁰, Zachary Boyd^{3,‡}, Hao (Tracy) Tang³, Yun Shen³, Marina Tschaika³, Jaclyn Neely^{3,§}, Anthony El-Khoueiry^{11,§}

Graphical abstract

Markers evaluated

- Tissue
 - PDL1 IHC
 - Inflammatory gene expression (CD274, CD8A, LAG3, STAT1)
- Serum •
 - AFP
 - HBV DNA/HCV RNA
 - NLR
 - Platelets
 - T-cell markers

PDL1 in association with more CR/PR but CR also seen in PDL1 <1%

Response, n (%)	Overall population (SOR-naive and SOR-experienced) (n = 195)	SOR-experienced (n = 137)	
PD-L1 <1%			
Total, n (%)	159 (82)	110 (80)	
Objective response rate, % (95% CI)	16 (11-22)	13 (8-20)	
Complete response, n (%)	6 (4)	4 (4)	
Partial response, n (%)	19 (12)	10 (9)	
Stable disease, n (%)	66 (42)	49 (45)	
Progressive disease, n (%)	59 (37)	42 (38)	
PD-L1 ≥1%			
Total, n (%)	36 (18)	27 (20)	
Objective response rate, % (95% CI)	28 (16-44)	26 (13-45)	
Complete response, n (%)	2 (6)	1 (4)	
Partial response, n (%)	8 (22)	6 (22)	
Stable disease, n (%)	9 (25)	8 (30)	
Progressive disease, n (%)	15 (42)	10 (37)	

PD-L1, programmed death-ligand 1; SOR, sorafenib.

Responses not determined in overall population: 9 patients with PD-L1 <1% and 2 patients with PD-L1 ≥1%; sorafenib-experienced population: 5 patients with PD-L1 <1% and 2 patients with PD-L1 ≥1%.

Clinical implications of heterogeneity in PD-L1 immunohistochemical detection in hepatocellular carcinoma: the Blueprint-HCC study

David J. Pinato¹, Francesco A. Mauri¹, Paolo Spina^{2,3}, Owen Cain⁴, Abdul Siddique¹, Robert Goldin¹, Stephane Victor¹, Corinna Pizio³, Ayse U. Akarca⁵, Renzo L. Boldorini³, Luca Mazzucchelli², James R. M. Black¹, Shishir Shetty⁴, Teresa Marafioti⁵ and Rohini Sharma¹

British Journal of Cancer (2019) 120:1033-1036; https://doi.org/10.1038/s41416-019-0466-x

Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies

Clinical Cancer Research

James J. Harding¹, Subhiksha Nandakumar², Joshua Armenia², Danny N. Khalil¹, Melanie Albano¹, Michele Ly¹, Jinru Shia³, Jaclyn F. Hechtman³, Ritika Kundra², Imane El Dika¹, Richard K. Do⁴, Yichao Sun²⁵, T. Peter Kingham⁶, Michael I. D'Angelica⁶, Michael F. Berger^{3,5}, David M. Hyman¹, William Jarnagin⁶, David S. Klimstra³, Yelena Y. Janjigian¹, David B. Solit^{1,2,5}, Nikolaus Schultz^{2,5,7}, and Ghassan K. Abou-Alfa¹

dMMR-MSI-H: literatures

Tumor type	dMMR/MSI-H (%)	High TMB (%)	References
Esophageal cancer	0-3.3	3.5-17.5	[38-41, 45]
Gastroesophageal junction cancer	4-8	3.1	[40, 43]
Gastric cancer	7.5-21.9	8.3-13.3	[38-43]
Small intestinal cancer	12	10.2-30.0	[40, 42]
Gastrointestinal stromal cancer	0	0-6.9	[40, 42]
Right-sided colon cancer	13.5-27	14.6	[38-43]
Left-sided colon cancer	2.0-2.2	3.5	[40, 43]
Rectal cancer	2.2-9.2	3.0	[38-41, 43]
Pancreatic cancer	0-1.3	1.4-27.9	[39-41, 43, 60, 61]
Biliary tract cancers	0-3	3.7-26.1	[10, 40-42, 66]
Hepatocellular carcinoma	0–2.9	2.2-7.4	[38-42, 70]
Neuroendocrine tumor/cancer	0	1.3-14.8	[40, 42]

dMMR mismatch repair deficient, MSI-H microsatellite instability-high, TMB tumor mutation burden

Conclusions

- Predictive biomarker for ICI is being developed rapidly for GI cancers.
- For CRC, the most clinically applicable biomarker for IO remains MSI-H/d-MMR.
- For GC, there is more understanding about PD-L1 CPS. High CPS ≥ 10 is required for monotherapy anti-PD1 while chemo + anti-PD1 benefits lower CPS.
- For HCC, there is still lack of predictive biomarker for ICI.
- More novel biomarkers are expected in future.

