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Liquid biopsies
most cell-free DNA (cfDNA) is
shed from hematopoietic cells

for cancer patients, some cfDNA
may be shed by tumor cells
(ctDNA)

Husain and Velculescu, JAMA, 2017
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Liquid biopsy approaches
Leary et al, Science TM, 2010
Leary et al, Science TM, 2012
Phallen et al, Science TM, 2017
Cristiano et al, Nature, 2019
Mathios et al, Nature Comm, 2021

4 / 49



Continuum of cancer care
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Challenges

de novo detection required

ctDNA/cfDNA may be very small
while disease is still localized

cancer prevalences in most
screening populations are low;
positive predictive value of a
positive liquid biopsy test may
be small

Early cancer detection and screening
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Fraction of ctDNA with mutations is small

Cristiano et al., Nature, 2019
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cfDNA fragments orginate from
nucleosomes
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Altered fragment lengths of ctDNA

Intra-patient comparison of fragment lengths
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Negative control

20 loci where germline alterations were detected
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Genome-wide alterations of
fragmentation patterns
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A/B compartments (1 - 2x coverage)
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Genomic and chromatin changes
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DELFI
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High sensitivity and specificity overall

gradient boosted model
Cristiano et al., Nature, 2019
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By stage
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By histology
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Statistical challenges and rationale
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Genome-wide cfDNA fragmentation data
Participants 

~400 (~200 cancer cases and ~200 non-cancers)

Non-cancers were part of a screening population

Multiple cancer types: ovarian, lung, breast, and 5 others

cfDNA features 

~1000 statistical summaries of cfDNA fragmention

39 measures of chromosome arm aneuploidy ($z$-scores)

mitochondrial representation (single number)

(n) :

(p) :
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Our primary goal is prediction
Can we distinguish patients with cancer from individuals without
cancer?

We are willing to trade some interpretability for more sensitive and
specific detection of cancer

 << n p
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Prediction task is complex
How do fragmentation profiles across the genome differ from
fragmentation profiles we observe in non-cancer populations?

The combination of features useful for prediction may not necessarily
explain important biological pathways or provide mechanistic insight
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Machine learning
In machine learning, a model learns from examples rather than
being programmed with rules

Rajkomar et al., NEJM, 2019

Features: the inputs (fragmentation characteristics)

Labels: cancer or non-cancer
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n << p:
"deep learning"
approaches will not
outperform simpler
models

hypothesis-driven
approaches that
leverage known biology
and features can lead to
more useful and
replicable models

Tradeoff of model complexity and interpretability

Friedman, Tibshirani, and Hastie, Elements of Statistical Learning

24 / 49



Mechanics
1. specify resampling-based approach for cross-validation

2. specify a machine learning architecture (logistic regression, random
forest, etc)

3. train and test

4. summarize predictive performance

5. specify a final model
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Cross-validation involves a lot of
repetition

Easy to make mistakes

Use existing infrastructure for:

resampling (rsample)

model specification (tidymodels, caret)

tuning hyperparameters and nested cross-validation

training and testing a model (tidymodels, recipes, workflows, and
others)

summarizing performance (tidymodels)
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Resampling approach: 5-fold cross validation

library(tidyverse)
library(magrittr)
library(rsample)
ngenes <- 200
nsamples <- 50
x <- matrix(rnorm(ngenes*nsamples), ngenes, nsamples)
y <- factor(rbinom(nsamples, 1, 0.5))
dat <- t(x) %>%
    set_colnames(paste0("feature_", seq_len(ncol(.)))) %>%
    as_tibble() %>%
    mutate(y=y)
training.test <- vfold_cv(dat, v=5)
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Train and test
library(tidymodels)
lr_mod <- logistic_reg(mixture=1,
                       penalty=0.5) %>%
    set_engine("glmnet") %>%
    set_mode("classification")
lr_workflow <- workflow() %>%
    add_model(lr_mod) %>%
    add_formula(y ~ .)
set.seed(914952)
lr_fit <- lr_workflow %>%
    fit_resamples(training.test)
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Summarize performance
collect_metrics(lr_fit)

## # A tibble: 2 × 6
##   .metric  .estimator  mean     n std_err .config             
##   <chr>    <chr>      <dbl> <int>   <dbl> <chr>               
## 1 accuracy binary       0.4     5  0.0447 Preprocessor1_Model1
## 2 roc_auc  binary       0.5     5  0      Preprocessor1_Model1
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Repeated cross-validation
Our initial randomization of patients to the 5 folds was arbitrary

performance assessment could be slightly biased because of the
randomization

Repeat the process  times and average the predictions across the 
repeats

train.test.r10 <- vfold_cv(dat,
                           v=5,
                           repeats=10)
lr_fit_rcv <- lr_workflow %>%
    fit_resamples(train.test.r10)

r r

30 / 49



Cross-validation or split-study validation?
Resampling based methods such as bootstrap or repeated -fold cross-
validation are nearly always your best option

Exceptions:

You have a large study (20,000+) and it does not bother you that you will not learn anything from 1/3 of the

dataset

Required for regulatory purposes

Your dataset consists of multiple independent studies

 - consider multi-study models

 - approaches for external validation

k
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Early detection of lung cancer

32 / 49



LUCAS study
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Altered fragmentation profiles
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Machine learning model
Machine learner: penalized logistic regression

Features:

PCA of the fragmentation profiles

z-scores for chromosomal aneuploidy
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278 x 504 matrix
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Dimensionality
reduction

Principal components that
explain 90% of the variance
across samples

278 x 10 matrix

Regression coefficients for
chromosome arm-level copy
number
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Stochasticity
of model
across
training sets

Columns display 50
training sets from
repeated cross-
validation

Rows are regression
coefficients
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Scores by stage and histology
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Internally cross-validated performance
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Internally cross-validated performance
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Fixed model
and cutoff at
80% specificity

External validation

42 / 49



Sequential screening
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Sequential screening
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Fragmentation profiles differ between
cancer types

Cristiano et al., Nature, 2019
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Tissue of origin

Cristiano et al., Nature, 2019
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Disease monitoring

Cristiano et al., Nature, 2019
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Machine learning for noninvasive detection and monitoring of
cancer

Genome-wide cfDNA fragmentation profiles reflect abnormal packaging and genomic
content of cancer genomes

Liquid biopsies can detect cancer recurrence early and provide opportunities for
intervention

With enough examples, gradient boosted models / random forests can do a reasonable job
at feature selection and prediction

Leverage known biology when possible especially for 

fragments derived from nucleosomes, aneuploidy

coverage at transcription start sites

Multi-study models, ensembling machine learners, and approaches for external cross-
validation can lead to more replicable classifiers

n << p
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