

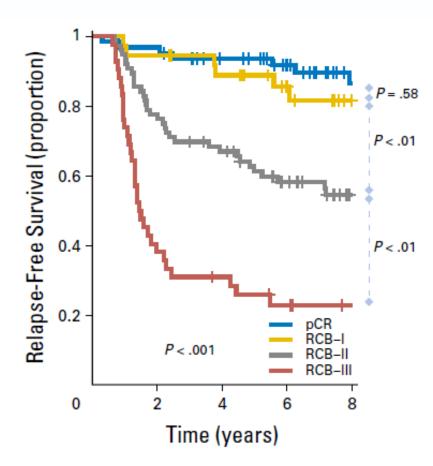
Neoadjuvant Therapy

Laura Kennedy, MD PhD

Assistant Professor of Medicine, Vanderbilt University
Medical Center

Disclosures

No relevant financial relationships to disclose.


Outline

- Keynote-522 regimen
 - Benefits
 - Regimen details
 - Adjuvant pembrolizumab
 - Toxicity
- Optimization and questions of interest

Role of Neoadjuvant Therapy

Fraser-Symmans et al. JCO (2017) 35:1049-1060

- Optimize surgical outcome
- Reduce breast cancer recurrence risk
- Triple-negative (TNBC) and HER2+ breast cancer – estimate prognosis and individualize adjuvant therapy

Keynote-522 Treatment Regimen

Approved in 2021 for early high-risk TNBC based on EFS benefit

Paclitaxel 80 mg/m2 IV weekly Carboplatin 1.5 mg/mL/min IV weekly Carboplatin 5 mg/mL/min IV q3wk

Pembrolizumab 200 mg IV q3wk

Doxorubicin 60 mg/m2 IV q3wk Cyclophosphamide 600 mg/m2 q3wk Pembrolizumab 200 mg IV q3wk

Pembrolizumab G 200 mg IV q3wk Ε R Y 18 weeks

12 weeks

12 weeks

Keynote-522 Enrollment Criteria

Inclusion Criteria

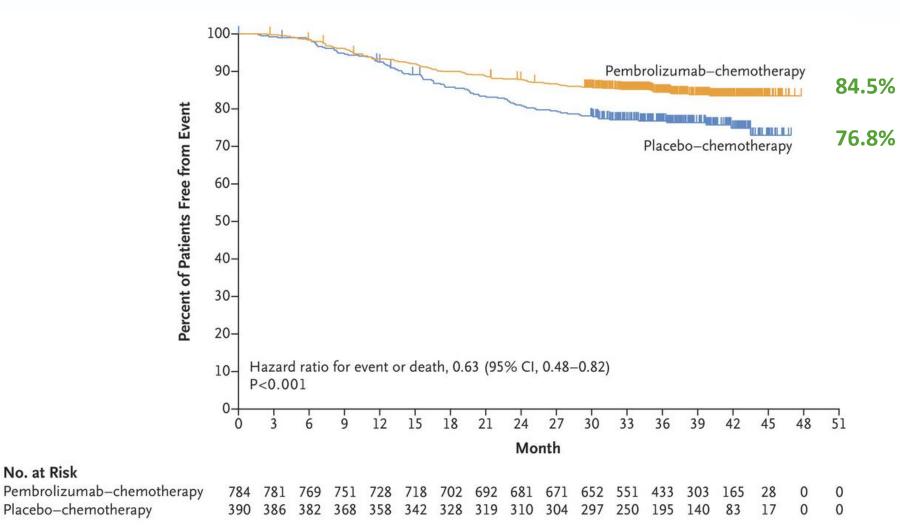
- Triple-negative breast cancer
 - T1c, N1-2
 - T2-4, N0-2
- ECOG 0-1
- Adequate organ function

Exclusion Criteria

- Active autoimmune disease requiring systemic therapy
- Immunodeficiency diagnosis
- Steroid or other immunosuppressive therapy within 7 days of tx start
- History of non-infectious pneumonitis

Keynote-522 Patient Demographics

- Over 85% of patients were under the age of 65
- ~80% were PD-L1+
- T1 and T2 tumors made up about 75% of study population
- About half of the patients were node-positive



	Pembrolizumab–	Placebo-			
Variable	Chemotherapy (N=401)	Chemotherapy (N=201)	Estimated Treatment Difference†	P Value	
			percentage points (95% CI)		
Pathological stage ypT0/Tis ypN0					
No. of patients	260	103			
Percentage of patients with response (95% CI)	64.8 (59.9–69.5)	51.2 (44.1–58.3)	13.6 (5.4–21.8)	P<0.001	
Pathological stage ypT0 ypN0					
No. of patients	240	91			
Percentage of patients with response (95% CI)	59.9 (54.9–64.7)	45.3 (38.3–52.4)	14.5 (6.2–22.7)		
Pathological stage ypT0/Tis					
No. of patients	275	108			
Percentage of patients with response (95% CI)	68.6 (63.8–73.1)	53.7 (46.6–60.8)	14.8 (6.8–23.0)		

Keynote-522 Event-Free Survival

Schmid et al. NEJM 2022 386:556-567.

Placebo-chemotherapy

No. at Risk

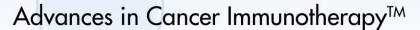
Keynote-522 Event-Free Survival

Subgroup	Pembrolizumab– Chemotherapy	Placebo- Chemotherapy		Haza	rd Ratio fo	or Event or De	eath (95%	% CI)
	no. of patients with	event/total no. (%)						
Overall	123/784 (15.7)	93/390 (23.8)			- :			0.63 (0.48-0.82)
Nodal status					į			
Positive	80/408 (19.6)	57/196 (29.1)		-	-			0.65 (0.46-0.91)
Negative	43/376 (11.4)	36/194 (18.6)		-				0.58 (0.37-0.91)
Tumor size								
T1 to T2	64/581 (11.0)	59/290 (20.3)		-	H			0.51 (0.36-0.73)
T3 to T4	59/203 (29.1)	34/100 (34.0)		¥ 	+			0.84 (0.55-1.28)
Carboplatin schedule					- 1			
Weekly	71/444 (16.0)	56/220 (25.5)			- :			0.60 (0.42-0.86)
Every 3 wk	50/334 (15.0)	37/167 (22.2)		-	<u> </u>			0.65 (0.42-0.99)
PD-L1 status								
Positive	98/656 (14.9)	68/317 (21.5)		-	_			0.67 (0.49-0.92)
Negative	25/128 (19.5)	25/69 (36)	_	+				0.48 (0.28-0.85)
Age					1			
<65 yr	103/700 (14.7)	79/342 (23.1)		-	- !			0.61 (0.45-0.82)
≥65 yr	20/84 (24)	14/48 (29)		8	◆ i			0.79 (0.40-1.56)
ECOG performance-status score					1			
0	101/678 (14.9)	80/341 (23.5)		-	- i			0.60 (0.45-0.80)
1	22/106 (20.8)	13/49 (27)			•	_		0.81 (0.41-1.62)
			0.25	0.50	1.00	2.00	4.00	
				nbrolizumab emotherapy Better		Placebo– Chemotherapy Better	,	

Keynote-522 Adverse Effects

- Grade 3+ AEs occurred in 77% of pts that received pembrolizumab
 - Nausea, alopecia, anemia were most common AEs of any grade
- ↑ rates of pyrexia, hypothyroidism, rash, anorexia, and hypokalemia were noted with the addition of pembrolizumab

 Four deaths in the pembrolizumab arm – Multiorgan dysfunction 2/2 sepsis, PE, pneumonitis, and autoimmune encephalitis



Keynote-522 Summary

- Addition of pembrolizumab to a standard chemotherapy backbone for high-risk TNBC improved long-term outcomes
 - True regardless of nodal and PD-L1 status
 - Subgroup analysis ?less benefit? in larger primary tumors (T3 and T4), but fewer pts in this subgroup
- Addition of pembrolizumab also increased toxicity
 - Potential for permanent AEs hypothyroidism and adrenal insufficiency
 - Also risk of death related to irAEs notable in a curative intent population

Things to Consider

- Adjuvant therapy
- Further optimization of outcomes
 - Chemotherapy backbone
 - Immunotherapy timing
- Patient selection
- Other breast cancer subtypes

Adjuvant Pembrolizumab

- Is this needed?
- For patients with residual disease, should they receive capecitabine or olaparib (if BRCA1/2+)?

I-SPY2 – 4 cycle pembrolizumab

Paclitaxel 80 mg/m2 IV weekly

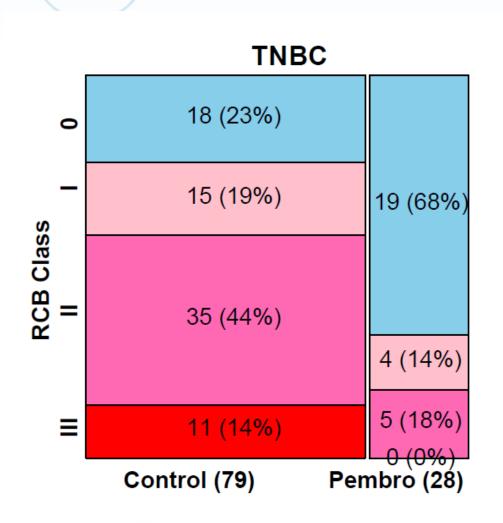
Pembrolizumab 200 mg IV q3wk

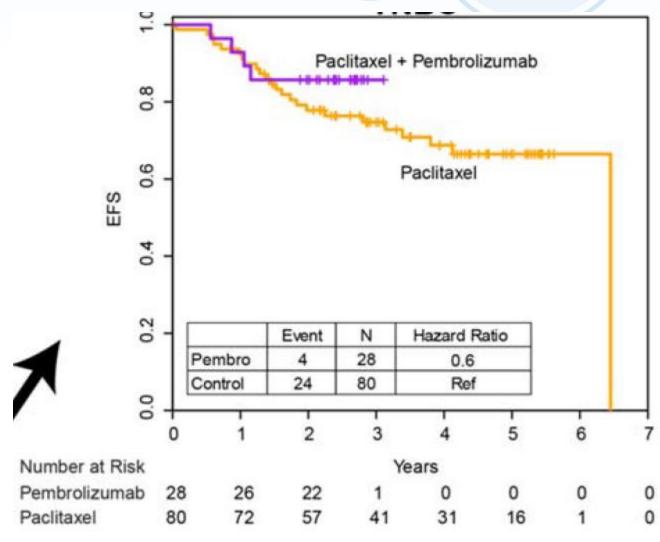
Carboplatin

Doxorubicin 60 mg/m2 IV q2wk

Cyclophosphamide 600 mg/m2 q2wk

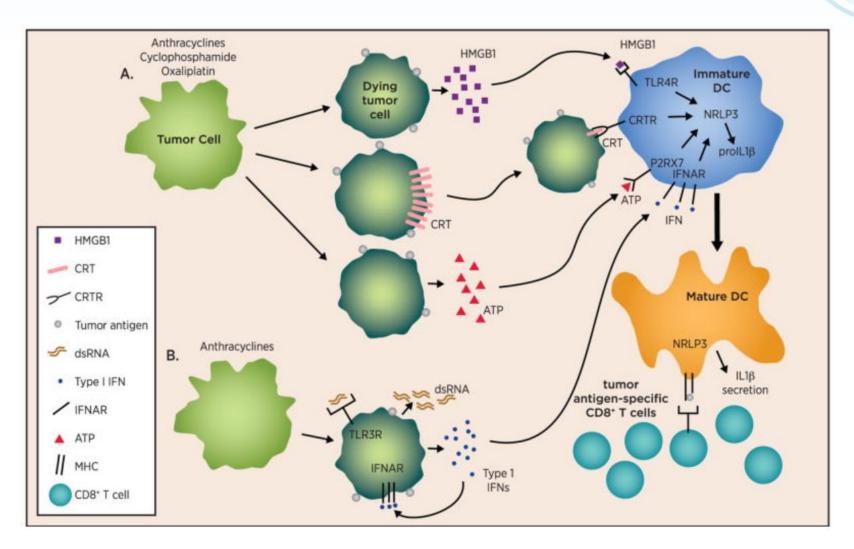
8 weeks


12 weeks



S U G R

1-SPY2 – 4 cycle pembrolizumab


Neoadjuvant IO Trials in TNBC

Clinical Trial Name	IO Agent	Chemotherapy Backbone	Adjuvant IO therapy?	Improve pCR rate?
Keynote-522 (Schmid et al. NEJM 2020 382:810-821)	Pembrolizumab	Paclitaxel + carboplatin → AC q3wk	Yes	Yes
GeparNuevo (Loibl et al. Ann Oncol 2019 8:1279-1288.)	Durvalumab	nab-paclitaxel — EC	No	Yes – in pts who received a window dose of durvalumab
NeoTRIPaPDL1 (Gianni et al. SABCS 2019, GS3-04)	Atezolizumab	nab-paclitaxel + carboplatin	No	No
Impassion031 (Mittendorf et al. Lancet 2020 396:1090-1100.)	Atezolizumab	Nab-paclitaxel → AC q2wk	Yes	Yes
I-SPY2 (Nanda et al. JAMA Oncol 2020 6(5):1-9.)	Pembrolizumab	Paclitaxel +/- carboplatin → AC q2wk or q3wk	No	Yes

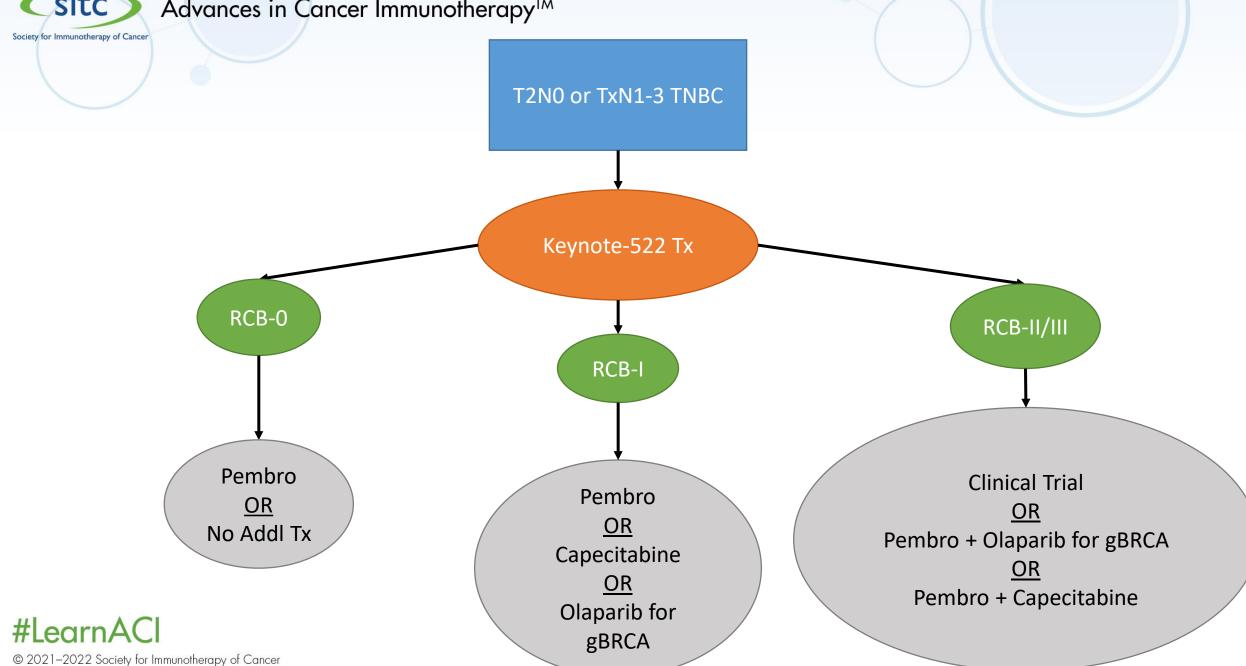
Chemotherapy and IO Interplay

Patient Selection – Balancing Risk/Benefit

- Biomarkers are needed to help identify patients that benefit from addition of IO
- Consider risk of permanent toxicities hypothyroidism and adrenal insufficiency
- TNBC with node-positive disease or tumors larger than 2 cm may benefit based on Keynote-522 analysis

Future Areas of Interest

- Biomarker-driven clinical trials to help select patients for IO + chemotherapy
- Correlative studies looking at benefit of anthracyclines in combination with IO-containing regimens
 - Risk of cardiomyopathy and leukemia with anthracyclines
- Trials in Hormone-Receptor Positive Breast Cancer
- Adjuvant studies for patients with TNBC and significant residual disease post-Keynote-522



Thank you for your attention!

