Disclosures ...I have none

Phases of adaptive immune responses

Kaech and Wherry (2007) Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity. 27:393-405.

CD8

Can also detect tumor-specific CTLs in a few cases too.

If EFFECTOR T cell fates are specified by the TYPE of '3rd Signal'...

- 1. How do memory T cells protect against re-infection?
- 2. What are the different types of memory T cells?
- 3. What determines the 5-10% of the cells that survive to become memory
- 4. What effects do chronic infection/antigen persistence have on memory development?

Enhanced Function

Memory cells aren't simply naïve cells at a high frequency. T cells show enhanced functional responses, such as rapid induction of proliferation and effector responses, when they reencounter antigen

Why are memory T cells more responsive to antigen than naïve T cells?

- Structural changes (avidity of TCR/ signalosomes)
- Gene expression changes (chromatin remodeling)
- Location

- 1. How do memory T cells protect against re-infection?
- 2. What are the different types of memory T cells?
- 3. What determines the 5-10% of the cells that survive to become memory
- 4. What effects do chronic infection/antigen persistence have on memory development?

Subsets of memory T cells:

Different types of memory T cells

Central Memory

Tcm

Lymph node homing CCR7+ CD62L+ Circulating

Effector Functions +/-IL-2+

Effector Memory

Peripheral tissues Inflammatory chemokine receptor Circulating

↑Effector Functions **↑**Cytotoxicity

Higher proliferative capacity Lower proliferative capacity

Resident Memory

Mucosal Tissues (skin, gut) Long-lived, but not circulating

↑Effector Functions

↑Cytotoxicity

Lower proliferative capacity

Stability of differentiation states unclear

Assessing quality of memory

Assessment of memory (or effector) T cell "quality" by poly-functionality, not simple numbers. "Functions" in this example (from human CD8 T cells) were the ability to make IFN- γ , TNF- α , IL-2, CCL4 and to degranulate (CD107 assay) in response to TCR stimulation.

What are the roles of these different types of memory T cells in protection against infectious disease?

How do they collaborate?

What types of T cells are most protective against cancer?

- 1. How do memory T cells protect against re-infection?
- 2. What are the different types of memory T cells?
- 3. What determines the 5-10% of the cells that survive to become memory
- 4. What effects do chronic infection/antigen persistence have on memory development?

Stochastic Modelcompetition for survival factors

Cell intrinsicfate Model

What are the signals that determine this cell fate decision?

What are the signals that determine this cell fate decision?

Opposing Transcriptional Programs Regulating Effector/Memory Fates in CD8 T cells

Memory potential longevity self-renewal proliferative potential

Balancing act: A goldilocks view of making memory T cells

Summary #1

Generation of memory T cells:

- Effector and memory T cells can derive from the same naïve cell.
- Markers such as <u>KLRG-1</u> and <u>CD127</u> (<u>IL-7</u> receptor) have been useful for <u>distinguishing</u> cells likely to become short-lived effectors versus long lived memory CD8 T cells. It is not clear though whether these molecules can positively <u>dictate</u> the cell fate.
- Numerous factors can affect production of memory versus effector T cells, including exposure to <u>inflammatory cytokines</u> and <u>IL-2</u>.
- These signals regulate a gradient of transcription factors <u>T-bet</u>, <u>Eomes</u>, <u>Blimp/Bcl-6</u>, <u>Id2/Id3</u>, <u>STAT3/STAT4</u> that cooperatively function to influence the memory/effector differentiation states.

- 1. How do memory T cells protect against re-infection?
- 2. What are the different types of memory T cells?
- 3. What determines the 5-10% of the cells that survive to become memory
- 4. What effects do chronic infection/antigen persistence have on memory development?

Negative regulation of adaptive T cell immunity: checks and balances

IL-10

TGF-b

Tregs

MDSC

T cell exhaustion is a common feature of chronic (viral) infections and cancer

- Occurs in multiple animal models (e.g. LCMV, MHV, FLV, SIV, L.major) and in human infections (e.g. HIV, HCV, HBV, HTLV-I)
- •Common feature of cancer and therapeutics targeting reversal of exhaustion in trials
- Dysfunction is hierarchical Lose IL-2, Proliferation, Cytotoxicity, TNF, IFN-γ eventually physical deletion
- Correlates with viral and/or antigen load, duration of infection, and low CD4 T cell help
- Major role for the inhibitory receptor PD-1 and co-expression of multiple other inhibitory receptors (LAG-3, 2B4, CD160, TIM3, EP2/4 etc)
- CD8 T cell exhaustion prevents optimal control of infection and tumors

Model for hierarchical loss of T-cell function during chronic viral infection.

Model for hierarchical loss of T-cell function during chronic viral infection.

T cell exhaustion is a common feature of many chronic infections and cancer

T cell exhaustion in melanoma

Lukas Baitsch, et al. J Clin Invest. 2011 June 1;121(6):2350-2360.

T cell exhaustion in melanoma

How is the process of T cell exhaustion regulated?

- Transcriptional regulation of exhaustion
- Subsets of exhausted T cells and therapeutic effects of anti-PDL1 mAb treatment

T cell Exhaustion is a Progressive Process

Arrays

acute LCMV: Transcriptional Profiling

chronic LCMV:

Unique Transcriptional Program of Exhausted CD8 T cells

Sorted on DbGP33 tetramer+ CD8 T cells from LCMV Armstrong or clone 13 infection

- TCR and cytokine signaling
- Chemotaxis, Migration, etc
- Metabolism
- Transcription factors
- Inhibitory receptors

Dr. John Wherry (UPENN), unpublished data

Differentiation, lineage and transcriptional control of CD8 T cell exhaustion

Expression of T-bet and Eomes inversely correlate in exhausted CD8 T cells

d60 (Chronic)

Subsets of exhausted CD8 T cells during chronic infection

In vivo response of exhausted CD8 T cell subsets to PD-L1 blockade

PD-1^{Int} vs PD-1^{Hi} from spleen, clone 13 rechallenge d7.5

Re-invigoration of exhausted CD8 T cells by selective expansion

Summary #2

- CD8 T cell priming in the absence of CD4 T cells can lead to <u>defective</u>
 <u>"helpless" memory CD8 T cells</u>, which lose function and fail to survive long term.
- Exposure to persistent antigen, as occurs in chronic infection, leads to <u>exhaustion</u>, a <u>progressive loss of CD8 T cell function and survival</u>. This process involves <u>PD-1 upregulation</u>.

Thanks

- Kaech lab
- John Wherry (UPENN)
- Joe Craft (Yale)

Two major classes of memory T cells were first identified in humans, and were termed "Effector Memory" (Tem) and "Central Memory" (Tcm).

The distinction is mainly based on expression of the trafficking molecules, CD62L (L-selectin) and CCR7, which are expressed on Tcm but not Tem. This allows Tcm (but not Tem) to access secondary lymphoid tissues, similar to naïve T cells.

These features may differ for distinct memory T cell pools: e.g. human CD4 Tem and Tcm have more dramatic differences in effector functions than mouse CD8 cells (below).

Altered Trafficking

Memory cells are also altered in their distribution throughout the body -- having access to multiple non-lymphoid sites (unlike naïve T cells) allowing for improved surveillance.

Models for memory T cell generation: Distinct precursors?

Are the naïve precursors leading to effector versus memory the same or different?

1"#2%" %1,345#) - (%46!0# - /%0#

*'\\$354! O\\$('%45(8# - /%O\#

Metabolic coordination with effector and memory T cell differentiation

Figure 4

Antigen-specific T cells that persist in dysfunctional states and....

Memory T cells

Models for memory T cell generation

"A memory is what is left when something happens and does not completely unhappen."

Edward de Bono (1933-)

b Surface markers

KLRG1 ^{lo}
IL-7Rα ^{hi}
CXCR3hi
CD62Lhi

KLRG1 ^{lo}
KLKOI
II -7Rα ^{hi}
IL-/Ku
CXCR3hi
CD62Llo
CDUZL

KLRG1 ^{hi} IL-7Rα ^{hi}
CXCR3hi CD62Llo

_	
	KLRG1hi
	IL-7R α hi
1	CXCR3lo
(CD62Llo

KLRG1hi
$IL\text{-}7R\alpha^{lo}$
CXCR3 ^{lc}
CD62Llo

c Transcription factors

