

IL-18 and Adoptive Cell Therapies

Simone Minnie, PhD

18th July 2022

Adoptive Cell Therapies

Stem cell transplantation

Autologous SCT

- T cell fitness likely compromised
- No HLA disparity limited treatmentrelated mortality
- ASCT provides progression free survival benefit above drug therapies (Attal et al. N Engl J Med, 2017)
- Relapse is the major cause of death

Allogeneic SCT

- T cells are from a healthy donor
- Graft-versus-tumor effect is potentially curative
- Treatment-related mortality often high (Graft-versus-host-disease)
- Relapse is the major cause of death (Yin et al, Cancer Cell Int, 2018)

We need to improve anti-tumor efficacy of SCT for hematological malignancies

Image source: iStock

Engineered T Cell Immunotherapy

Met, Ö., Jensen, K.M., Chamberlain, C.A. et al. Semin Immunopathol 41, 49–58 (2019.

Campillo-Davo D, Anguille S, Lion E. Cancers. 2021; 13(18):4519.

Bruno B et.al. Haematologica 2021;106(8):2054-2065

'Armored' CAR T cells

- Cytokine secretion can be constitutive or induced by CAR activation
- Cytokines include:
 - IL-12
 - \uparrow IFN γ , granzyme B etc.
 - Pegram et al. *Blood* 2012
 - Yeku et.al Sci. Rep. 2017
 - Dose limiting toxicity in TILS
 - Zhang et al. *Clin. Cancer Res.* 2015
 - CAR T cell trials still ongoing
 - IL-15
 - Hoyos et al. Leukemia 2010
 - <u>IL-18</u>

CAR constructs

'Armored' CAR T cells expressing IL-18

Cell Reports

Report

Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18

Graphical Abstract

Authors

Biliang Hu, Jiangtao Ren, Yanping Luo, ..., John Scholler, Yangbing Zhao, Carl H. June

Correspondence

xihilike@gmail.com (B.H.), cjune@upenn.edu (C.H.J.)

In Brief

Hu et al. create IL-18-secreting chimeric antigen receptor T (IL-18-CAR T) cells to significantly boost CAR T cell proliferation and antitumor activity.

Highlights

Augmented proliferation of synthetic IL-18-expressing human T cells

 \bullet rIL-18 augments IFN- γ secretion and proliferation of anti-CD3 activated T cells

• IL-18-secreting CD4⁺ T cells promote CD8⁺ T cells through a helper effect

• IL-18 CAR T cells have superior proliferation and antitumor activity in mouse models

B16F10-expressing CD19

'Armored' CAR T cells expressing IL-18

Cell Reports

Article

Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System

Graphical Abstract

Authors

Mauro P. Avanzi, Oladapo Yeku, Xinghuo Li, ..., Anthony F. Daniyan, Matthew H. Spitzer, Renier J. Brentjens

Correspondence

yekuo@mskcc.org (O.Y.), brentjer@mskcc.org (R.J.B.)

In Brief

Avanzi et al. generate CAR T cells that secrete IL-18 and show improved activity in syngeneic hematologic and solid tumor models without prior preconditioning. They further show enhanced recruitment and anti-tumor activity of endogenous T cells.

Highlights

• IL-18-secreting CAR T cells enhance anti-tumor efficacy via IL-18 autocrine stimulation

• IL-18-secreting CAR T cells favorably alter EL4 tumor microenvironment

• IL-18-secreting CAR T cells enhance the anti-tumor response of endogenous T cells

• IL-18-secreting CAR T cells are efficacious in syngeneic models without preconditioning

'Armored' CAR T cells expressing IL-18

Cell Reports

CAR T Cells Releasing IL-18 Convert to T-Bet^{high} FoxO1^{low} Effectors that Exhibit Augmented Activity against Advanced Solid Tumors

Graphical Abstract

Authors

Markus Chmielewski, Hinrich Abken

Article

Correspondence

markus.chmielewski@uk-koeln.de

In Brief

Chmielewski and Abken engineer IL-18secreting CAR T cells (IL-18 TRUCKs) to convert cytotoxic T cells to Tbet^{high} FoxO1^{low} and shape a pro-inflammatory environment in advanced tumors.

Highlights

- CAR T cells releasing IL-18 upon CAR stimulation convert to Tbet^{high} FoxO1^{low} T cells

• IL-18 TRUCK treatment induces a Th1 acute phase response in the tumor

• IL-18 TRUCK cells improve survival of mice with advanced pancreatic and lung tumors

Advanced pancreatic tumor model

huCART19-IL18 in clinical trials

- Trial identifier: NCT04684563
- Phase 1 dose finding and safety trial (currently recruiting)
- Patients with chronic lymphocytic leukemia or non-hodgkin lymphoma
 - Relapsed/refractory disease
 - Ineligible for/relapsed after ASCT or commercial CAR T cell product

Possible pitfalls of 'armored' CAR T cells

- 1) Toxicity related to constitutive cytokine production particularly IL-12
- 2) Cytokine and T cell immunotherapies are permanently linked
 To limit possible cytokine toxicity = eliminating T cells
- 3) IL-18-BP is induced in response to IL-18 as a negative feedback regulator, particularly in the TME!
- Using a dosable cytokine therapy to boost proliferation/function of adoptively transferred T cells addresses limitations #1 + #2
- Decoy-resistant IL-18 addresses limitation #3

Using preclinical murine models to (hopefully) inform clinical translation

Please do not share/post unpublished data online

Murine Model of Autologous SCT

Adoptively transferred T cells limit relapse post-SCT

DR-18 enhances anti-myeloma effects

DR-18 promotes tumor-specific control of myeloma post-SCT

Murine Models of Allo-SCT

Limiting GVHD after Allo-SCT with PT-Cy

Cyclophosphamide targets rapidly proliferating cells

Checkpoint blockade is ineffective after PT-Cy

DR-18 is effective after PT-Cy: Myeloma

DR-18 is effective after PT-Cy: Leukemia

Conclusions/Future Directions

- IL-18 could be a highly effective partner for <u>ALL</u> adoptive T cell therapies
 - 'armored' CAR T cells
 - Decoy-resistant IL-18
- Key to success will be balancing anti-tumor efficacy with toxicities
- Future directions:
 - Initiate clinical trials in hematological malignancies
 - IL-18 doesn't act alone, combination therapies could further enhance anti-tumor activity

Acknowledgements

Fred Hutch:

Hill Lab

- Geoff Hill
- Kathleen Ensbey
- Chrissy Schmidt
- Sam Legg
- Nicole Nemychenkov
- Motoko Koyama
- Ping Zhang
- Julie Boiko

Furlan Lab

- Scott Furlan
- Olivia Waltner

Yale School of Medicine: - Aaron Ring

- Marcus Bosenberg

Mayo Clinic: Comprehensive Cancer Center

<u>Marta Chesi</u>

Fellowship Funding:

- Klorfine Fellowship 2021
- ASTCT New Investigator Award 2022
- SITC-BMS Postdoctoral Cancer Immunotherapy Translational Fellowship 2022

American Society for Transplantation and Cellular Therapy