

Immunotherapy for the Treatment of Genitourinary Malignancies Leonard Appleman MD PhD Associate Professor of Medicine/University of Pittsburgh

Society for Immunotherapy of Cancer

Disclosures

- Disclosures: Research Funding to Institution: Pfizer, Exelixis, BMS, Astellas, Acerta, Novartis, Bayer, Agensys, Merck, Genentech/Roche, Tokai, Aveo, Peloton, Calithera, Seattle Genetics, Inovio, Esai, Lilly.
- I will be discussing non-FDA approved indications during my presentation.

History of Immunotherapy in mRCC

FDA-approved Immunotherapies for mRCC

Drug	Approved	Indication	Dose
High dose Interluekin-2	1992	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)*
Interferon-a (with bevacizumab)	2009	Clear cell RCC***	9 MIU s.c. three times a week
Nivolumab	2015	Clear cell RCC Refractory to prior VEGF Targeted therapy	3mg/kg 240mg IV q 2 week or 480mg IV q 4 wks
Nivolumab +ipilimumab	2018	Clear cell RCC, treatement naïve	3mg/kg nivo plus 1mg/kg ipi q3 wks x 4 doses then nivo maintenance at flat dosing

*Retreatment: Evaluate after 4 weeks, advisable only if tumor shrinkage and no retreatment contraindications (see package insert for details)

High Dose IL-2 in mRCC

- 20 year analysis of 259 patients
- ORR = 20%
 - 9% CR (n = 23)
 - 12% PR (n = 30)
- Median duration of response = 15.5 months
- Median OS = 19 months

Second-Line Nivolumab in mRCC

- CheckMate 025 Phase III trial
- Nivolumab = anti-PD-1 antibody
- Metastatic, clear-cell disease
- One or two previous antiangiogenic treatments
- Nivolumab (3 mg/kg IV Q2W) vs everolimus (10 mg daily)

Society for Immunotherapy of Cancel

Second-Line Nivolumab in mRCC PD-L1 subgroups

<u>PD-L1 ≥ 1%</u>

<u>PD-L1 < 1%</u>

Association of Community Concer Center

Society for Immunotherapy of Cancel

First-line Nivolumab + Ipilimumab in mRCC

Nivolumab = anti-PD-1 antibody

Co-Primary Endpoints: OS, PFS, Response rate Population for co-primary endpoints: Intermediate and poor risk by IMDC

© 2018–2019 Society for Immunotherapy of Cancer

Ipilimumab = anti-CTLA-4 antibody

First-line Nivolumab + Ipilimumab in mRCC

First-line Nivolumab + Ipilimumab in mRCC PD-L1 Subgroups

In Development: First-line Atezolizumab + Bevacizumab in PD-L1+ mRCC

Motzer et al. ASCO GU 2018

Atezolizumab = anti-PD-L1 antibody

bevacizumab = anti-VEGF antibody

In Development: First-line Atezolizumab + Bevacizumab in PD-L1+ mRCC

Metastatic RCC 2018 First line Clear Cell

FAVORABLE

sunitinib (CHECKMATE 214) pazopanib (COMPARZ

avelumab/axitinib pembrolizumab/axitinib ?pembrolizumab/lenvatinib ?nivolumab/Cabozantinib Atezolizumab/bevacizumab

INTERMEDIATE/POOR

Ipilimumab/nivolumab (CHECKMATE 214) Cabozatntinib (CABOSUN

avelumab/axitinib pembrolizumab/axitinib ?pembrolizumab/lenvatinib Atezolizumab/bevacizumab

sitc

Society for Immunotherapy of Cancel

Association of Community Cancer Center

Society for Immunotherapy of Cancer

ADVANCES IN

IMMUNOTHERAPY¹

Approved Checkpoint Inhibitors for mUC Cisplatin Refractory

Drug/Trial	Phase	No. of	ORR	PFS	OS	Duration	Grade 3/4 AE	Maximal
name		patients				of	(treatment	duration of
						response	related	treatment
							deaths)	
CISPLATIN REFRACTORY								
Atezolizumab	П	310	16%	2.1	7.9	22.1 mo	18% (0	NR
IMvigor210			(6%	mo	mo		deaths)	
cohort 2			CR)		(1yr			
					29%)			
Atezolizumab	Ш	931	13%	NR	8.6	21.7 mo	20%	NR
IMvigor211					mo			
Pembrolizumab	Ш	542	21%	2.1	10.3	NR	14% (4	2 years
KEYNOTE-045				mo	mo		deaths)	
Nivolumab	П	265	19.6%	2 mo	8.7	NR	18% (3	NR
CheckMate275			(2%		mo		deaths)	
			CR)					
Avelumab	lb	242	17%	6.6	6.5	NR	10% (1 death)	NR
JAVELIN			(6%	weeks	mo			
			CR)					
Durvalumab	1/11	191	17.8%	1.5	18.2	NR	7% (2 deaths)	1 year
			(4%	mo	mo			
			CR)					

Anti-PD-L1 Antibodies

- 1) Atezolizumab
- 2) Avelumab
- 3) Durvalumab

Anti-PD-1 Antibodies

- 1) Nivolumab
- 2) Pembrolizumab

In development: Combinations

- 1) IO + IO
- 2) IO + Chemotherapy

Approved Checkpoint Inhibitors for mUC **Cisplatin Inelgible**

Anti-P	D-L1	Antib	odies

Atezolizumab 1)

•

PD-L1 stained tumorinfiltrating immune cells [IC] covering \geq 5% of the tumor area

Anti-PD-1 Antibodies

- Pembrolizumab 1)
 - PD-L1 CPS ≥ 10

In development: Combinations

- 10 + 101)
- 2) IO + Chemotherapy

CISPLATIN INELIGIBLE								
Atezolizumab	П	119	23%	2.7	15.9	NR	16% (1 death)	NR
IMvigor210			(9%	mo	mo,			
cohort 1			CR)		1yr			
					57%			
Pembrolizumab	П	370	29%	6mo	6	NR	19% (1 death)	2 years
KEYNOTE-052			(7%	30%	mo			
			CR)		67%			

FDA limits the use of atezolizumab and pembrolizumab for some urothelial cancer patients

FDA has limited the use of Tecentriq and Keytruda for patients with locally advanced or metastatic urothelial cancer who urothelial cancer who are not eligible for cisplatin-containing therapy.

The Agency took this action on June 19, 2018, due to decreased survival associated with the use of pembrolizumab or

Tumor Mutational Burden (TMB) May Signal Responses with PD-1 Blockade Atezolizumab in mUC

The Spectrum of Prostate Cancer

Sipuleucel-T in mCRPC

Drake et al. Curr Opin Urol 2010

Limited efficacy of Checkpoint Inhibitors in mCRPC No FDA-approved CIs for mCRPC

Ex. – KEYNOTE-199 (Pembrolizumab)

Cohort 1 (PD-L1+) Cohort 2 (PD-L1–) Cohort 3 (Any PD-L1; Bone

DeBono et al. ASCO 2018

Pembrolizumab is approved for all Microsatellite Instability-High (MSI-H) solid tumors

• MSI-H incidence is low in PC

• Localized PC ~2%

• Autopsy series of mCRPC ~12%

 MSI testing may offer pembrolizumab as an option

Future Combinations in mCRPC to Engage Immune System

- Hormonal therapy
- Radiation
- Radium-223
- PARP inhibitors
- Chemotherapy
- New targets

- Similar

incidence

overall

irAEs with Immune Checkpoint Inhibitors in GU Cancers

Meta-analysis of 8 studies

Adverse event	Incidence, any grade (GU only trials) (%)	Incidence, grades 3– 5 (GU only trials) (%)	Incidence any grade (non-GU clinical trials) (%)	Incidence, grades 3– 5 (non-GU clinical trials) (%)
Hypothyroid/ thyroiditis	0.8–9	0–0.6	3.9–12	0-0.1
Diabetes/DKA	0–1.5	0–0.7	0.8–0.8	0.4–0.7
LFT changes/ hepatitis	1.5–5.4	1–3.8	0.3–3.4	0.3–2.7
Pneumonitis	2–4.4	0–2	1.8–3.5	0.25–1.9
Encephalitis	NR	NR	0.2–0.8	0.0–0.2
Colitis/diarrhea	1–10	1–10	2.4–4.1	1.0–2.5
Hypophysitis	0–0.5	0–0.2	0.2–0.9	0.2–0.4
Renal Dysfunction/ nephritis	0.3–1.6	0–1.6	0.3–4.9	0.0–0.5
Myositis	0.8–5	0–0.8	NR	NR

Maughan et al. Front Oncol 2017

Immune-related Adverse Events

Grade of immune-related AE (CTCAE/equivalent)	Corticosteroid management	Additional notes
1	Corticosteroids not usually indicated	Continue immunotherapy
2	 If indicated, start oral prednisone 0.5-1 mg/kg/day if patient can take oral medication. If IV required, start methylprednisolone 0.5-1 mg/kg/day IV If no improvement in 2–3 days, increase corticosteroid dose to 2 mg/kg/day Once improved to ≤grade 1 AE, start 4–6 week steroid taper 	 Hold immunotherapy during corticosteroid use Continue immunotherapy once resolved to ≤grade 1 and off corticosteroids Start proton pump inhibitor for GI prophylaxis
3	 Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) If no improvement in 2–3 days, add additional/alternative immune suppressant Once improved to ≤ grade 1, start 4–6-week steroid taper Provide supportive treatment as needed 	 Hold immunotherapy; if symptoms do not improve in 4–6 weeks, discontinue immunotherapy Consider intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)
4	 Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) If no improvement in 2–3 days, add additional/alternative immune suppressant, e.g., infliximab Provide supportive care as needed 	 Discontinue immunotherapy Continue intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)

Table 2 Caparal suidance for carticostaraid management of immune valated adverse supert

Puzanov Journal for ImmunoTherapy of Cancer 2017

Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer (2016) 4:81 Journal for ImmunoTherapy DOI 10.1186/s40425-016-0180-7 of Cancer **POSITION ARTICLE AND GUIDELINES** Open Access CrossMark Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma Brian I. Rini¹, David F. McDermott², Hans Hammers³, William Bro⁴, Ronald M. Bukowski⁵, Bernard Faba⁶, Jo Faba⁶, Robert A. Figlin⁷, Thomas Hutson⁸, Eric Jonasch⁹, Richard W. Joseph¹⁰, Bradley C. Leibovich¹¹, Thomas Olencki¹², Allan J. Pantuck¹³, David I. Quinn¹⁴, Virginia Seery², Martin H. Voss¹⁵, Christopher G. Wood⁹, Laura S. Wood¹ and Michael B. Atkins^{16*} Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 Journal for ImmunoTherapy DOI 10.1186/s40425-017-0271-0 of Cancer **POSITION ARTICLE AND GUIDELINES** Open Access

📕 CrossMark

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew L. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Ella C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor III¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷ McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

(CrossMark

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Case Study 1: Metastatic Kidney Cancer

You are seeing a 65 year old woman with kidney cancer that was resected 3 years ago but has now recurred in the lungs and liver. She was initially treated with sunitinib but progressed after 9 months. What would immunotherapy option is most proven to treat her disease in the post VEGF targeted therapy setting?

- A. Interferon-alfa
- B. Ipilimumab plus nivolumab
- C. Nivolumab
- D. Atezolizumab

Case Study 2: Prostate Cancer

You are seeing a 68 y/o man who was diagnosed with a Gleason 5+4 prostate cancer 5 years ago. He had evidence of metastases to the bone and retroperitoneal lymph nodes, and was started on treatment with leuprolide and bicalutamide. His PSA initially declined, but then began rising two years ago, and the bicalutamide was discontinued. His PSA continued to slowly rise, and is currently 5 ng/mL. Bone scan shows new metastases, but he remains asymptomatic. No new liver or other visceral disease. What are appropriate immunotherapy treatment options for him?

- A. Nivolumab
- B. Sipuleucel-T
- C. Pembrolizumab
- D. B or C

Case Study 3: Bladder Cancer

You are seeing a 60 y/o man who was diagnosed with superficial bladder cancer 5 years ago. After several courses of resection and intravesical BCG therapy, he developed muscle-invasive disease 2 years ago and underwent radical cystoprostatectomy. He then did well until 4 months ago when he was found to have lung and liver metastases. He started treatment with gemcitabine and cisplatin chemotherapy, but unfortunately had progressive disease after 3 cycles of therapy. What is the best immunotherapy treatment option for him?

- A. IL-2
- B. Atezolizumab
- C. Pembrolizumab

