T Cell Response Signatures in Breast Cancer vs Chronic Infection

Holden T. Maecker, Ph.D. Stanford University

Features of a T cell response signature

- Magnitude and Breadth
 - Total frequency of Ag-specific T cells
 - Breadth of epitope responses
- Functional properties
 - Cytokine production
 - Degranulation or lytic capacity
 - Fraction of Ag-specific cells that are functional
- Phenotypes
 - Markers of memory and effector differentiation
 - Markers of exhaustion (PD-1, etc.)
 - Perforin, granzymes, etc.

Cancer vs. chronic infections (HIV, CMV)

- All require cellular immunity for protection
 - Virus-infected and cancer cells are both altered host cells, targets for CTL killing
- All result in chronic antigen exposure
 - Antigen usually not cleared from host
- CMV does not cause pathology in immunocompetent hosts
 - What is unique about the CMV signature?

Magnitude of CMV & HIV responses

Function of CMV & HIV responses

Absolute counts of IL-2+ cells:

Ratio IL-2+/IFNγ+ cells:

Phenotype of CMV & HIV responses

CD45RA:

HIV-responsive CD8+ T cells lack IL-2 production regardless of phenotype

Hypothesis

 IL-2 producing CD8+ T cells may be required to drive terminal effector differentiation

Correlation of CD8+ IL-2 production and presence of effector cells (HIV)

Magnitude of breast cancer responses

Functions of breast cancer responses

Phenotype of breast cancer responses

Conclusions

- CMV, HIV, and cancer can all induce endogenous T cell responses of varying magnitudes
- Only CMV responses tend to be protective
- The T cell response signatures for CMV, HIV, and cancer are very different
 - CMV: relatively high proportion of IFN_γ+IL-2+ cells, heterogenous phenotypes with lot of effectors
 - HIV: few CD8+IL-2+ T cells, intermediate phenotype
 - Cancer: low magnitude, IL-2+ but not IFN_γ+ T cells, central memory phenotype
- The mechanisms leading to these signatures need to be further elucidated

Implications

- T cell response signatures may be prognostic of disease progression
- Alteration of the endogenous signature may be necessary for vaccines to be effective

Acknowledgements

- BD Biosciences:
 - Laurel Nomura
 - Margaret Inokuma
 - Holli Dunn
 - Joyce Ruitenberg
 - Sonny Bhatia
 - Smita Ghanekar
 - Maria Jaimes
 - Daiva Gladding
 - Christine Dawson
 - Jack Dunne
 - Maria Suni
 - Skip Maino
 - Doug Petry
 - Meng-Xiang Tang
 - Perry Haaland
 - Charles Schmitt

- UCSF:
 - Brinda Emu
 - Rebecca Hoh
 - Steve Deeks
 - Jeff Martin
 - Mike McCune
 - Doug Nixon
- University of Washington:
 - Corazon delaRosa
 - Nora Disis
- Other:
 - Janet Siebert, Cytoanalytics
 - Eugene Veteska, consultant