Introduction to

Innate Immunity

Willem Overwijk, Ph.D. Dpt. of Melanoma Medical Oncology MD Anderson Cancer Center, Houston, TX

SITC Primer 2015

www.allthingsbeautiful.com

Making Cancer History

Piled Higher and Deeper by Jorge Cham

= =

= = .

.

.

.

. .

.

н

.

.

.

.

ш

.

.

.

88

.

.

.

.

8

.

.

.

.

.

.

.

.

. all.

www.phdcomics.com -----

III.

.....

To play, simply print out this bingo sheet and attend a departmental seminar.

Mark over each square that occurs throughout the course of the lecture.

The first one to form a straight line (or all four corners) must yell out BINGO !! to win! Zim

В		Ν	G	Ο	
Speaker bashes previous work	Repeated use of "um…"	Speaker sucks up to host professor	Host Professor falls asleep	Speaker wastes 5 minutes explaining outline	
Laptop malfunction	Work ties in to Cancer/HIV or War on Terror	"et al."	You're the only one in your lab that bothered to show up	Blatant typo	
Entire slide filled with equations	"The data <i>clearly</i> shows"	FREE Speaker runs out of time	Use of Powerpoint template with blue background	References Advisor (past or present)	
There's a Grad Student wearing same clothes as yesterday	Bitter Post-doc asks question	"That's an interesting question"	"Beyond the scope of this work"	Master's student bobs head fighting sleep	
Speaker forgets to thank collaborators	Cell phone goes off	You've no idea what's going on	"Future work will"	Results conveniently show improvement	
JORGE CHAM @ 2007					

title: "Seminar Bingo" - originally published 4/9/2007

....

-

- Definitions
- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

• Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

- Innate Immunity: Immunity that is naturally present and is not due to prior sensitization to an antigen; generally nonspecific. It is in contrast to acquired/adaptive immunity.
- Inflammation: a local response to tissue injury
 - Rubor (redness)
 - Calor (heat)
 - Dolor (pain)
 - Tumor (swelling)

"Innate Immunity" and "Inflammation" can mean many things

- Specific cell types and molecules orchestrate specific types of inflammation
- Innate Immunity A ≠ Innate Immunity B
- Inflammation A ≠ Inflammation B
- Some immune responses promote cancer, others suppress it

Functions:

- Rapid response to tissue damage
- Limit spread of infection
- Initiate adaptive immune response (T, B)
- Initiate tissue repair

Innate Immunity and Inflammation: A Paper Cut

Janeway, Immunobiology, 7th Ed.

- Definitions
- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Innate Immune Cells

Janeway, Immunobiology, 7th Ed.

Innate Immune Cells: granulocytes

Recognizepathogensantibodies

Cause

- pathogen clearance
- inflammation

Janeway, Immunobiology, 7th Ed.

Innate Immune Cells: phagocytes

Recognizepathogensantibodies

Cause

- pathogen clearance
- adaptive immunity
- inflammation

Innate Immune Cells: NK, NKT and $\gamma\delta$ T cells

Recognize

- pathogens
- stressed cells
- "altered self"

Cause

- pathogen clearance
- stressed/abnormal cell clearance
- inflammation

Danger signals start inflammation

PATHOGENS

DAMAGE

Rubartelli & Lotze, Trends in Immunology 2007

Danger signals start inflammation

PATHOGENS

DAMAGE

Rubartelli & Lotze, Trends in Immunology 2007

Receptors sense Danger: Pathogens

Receptors sense Danger: Damage

Kawai & Akira, Nat. Immunol. 2010

- Definitions
- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Innate Immunity and Inflammation in Cancer

• Outcomes vary:

- Promote cancer (Bad inflammation)

- Suppress cancer (Good inflammation)

- Definitions
- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Bad Inflammation Causes Cancer

DANGER

cellular damage caused by

- pathogens
- physical damage
- chemicals
- UV
- etc

COLLATERAL DAMAGE

cancer: a "never-healing wound"

Dvorak, NEJM 1986

Inflammation can Promote Cancer: collaboration with K-ras mutation

Inflammation can Promote Cancer: collaboration with HPV E6/E7 oncogene

De Visser et al., *Cancer Cell* 2005 Andreu et al., *Cancer Cell* 2010

Tumors can induce bad inflammation

Ugel et al., Curr. Opin. Pharmacol. 2010

Inflammation is (now) a Classic Hallmark of Cancer

Mantovani et al., *Nature* 2009 Hanahan & Weinberg, *Cell* 2000

Inflammation is (now) a Classic Hallmark of Cancer

This figure illustrates some of the many approaches employed in developing therapeutics targeted to the known and emerging hallmarks of cancer.

EGFR indicates epidermal growth factor receptor; CTLA4, cytotoxic T lymphocyte-associated antigen 4; mAb, monoclonal antibody; HGF, hepatocyte growth factor; VEGF, vascular endothelial growth factor; PARP, poly-(ADP ribose) polymerase.

Source: Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646-674. Reprinted with permission.

Hanahan & Weinberg, Cell 2011

- Definitions
- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Good vs. Bad Inflammation in Cancer

Immunity, Inflammation, and Cancer

Sergei I. Grivennikov,¹ Florian R. Greten,² and Michael Karin^{1,*}

Cell 140, 883-899, March 19, 2010

Cancer and Inflammation: Promise for Biologic Therapy

Sandra Demaria,* Eli Pikarsky,† Michael Karin,‡ Lisa M. Coussens,§ Yen-Ching Chen, Emad M. El-Omar,¶ Giorgio Trinchieri,# Steven M. Dubinett, ** Jenny T. Mao, †† Eva Szabo,‡‡ Arthur Krieg,§§ George J. Weiner,III Bernard A. Fox,¶¶ George Coukos,## Ena Wang,*** Robert T. Abraham,††† Michele Carbone,‡‡‡ and Michael T. Lotze§§§

J Immunother • Volume 33, Number 4, May 2010

Bottom Line: Inflammation can be Good or Bad: Pro or Anti-Tumor

Table 1. Roles of Different Subtypes of Immune and Inflammatory Cells in Antitumor Immunity and Tumor-Promoting Inflammation					
Cell Types	Antitumor	Tumor-Promoting			
Macrophages, dendritic cells, myeloid-derived suppressor cells	Antigen presentation; production of cytokines (IL-12 and type I IFN)	Immunosuppression; production of cytokines, chemokines, proteases, growth factors, and angiogenic factors			
Mast cells		Production of cytokines			
B cells	Production of tumor-specific antibodies?	Production of cytokines and antibodies; activation of mast cells; immunosuppression			
CD8 ⁺ T cells	Direct lysis of cancer cells; production of cytotoxic cytokines	Production of cytokines?			
CD4 ⁺ Th2 cells		Education of macrophages; production of cytokines; B cell activation			
CD4 ⁺ Th1 cells	Help to cytotoxic T lymphocytes (CTLs) in tumor rejection; production of cytokines (IFN γ)	Production of cytokines			
CD4 ⁺ Th17 cells	Activation of CTLs	Production of cytokines			
CD4 ⁺ Treg cells	Suppression of inflammation (cytokines and other suppressive mechanisms)	Immunosuppression; production of cytokines			
Natural killer cells	Direct cytotoxicity toward cancer cells; production of cytotoxic cytokines				
Natural killer T cells	Direct cytotoxicity toward cancer cells; production of cytotoxic cytokines				
Neutrophils	Direct cytotoxicity; regulation of CTL responses	Production of cytokines, proteases, and ROS			

Grivennikov et al. Cell 2010

In the Clinic: Cancer Therapies that Block Bad Inflammation

- COX-2 inhibitor Aspirin, Celecoxib (colorectal)
- VEGF blocker
 Bevacizumab, Sorafenib (several)
- IL-1 β blocker IL-1Ra (MM)
- Cytokine Regulators Lenalidomide (MDS, MM)
- Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)
- Remove suppressors
- Cytotoxic Therapy?
- Targeted Therapy?

ors Cycl/Fludar + T cells (melanoma)

- Radiation/Chemother. (all cancers)
- TKI inhibitors (many cancers)

In the Clinic: Cancer Therapies that Induce Good Inflammation

BCG (bladder) Bacteria • TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma) Cytokines IL-2 (melanoma, renal) IFN- α (melanoma, renal, CML) Antibodies aCTLA4/aPD(L)-1 mAb (melanoma) • Surgery Danger/inflammation? (cervical) Hem. Stem Cells Stem Cell Transpl. (leukemia, lymphoma) • T cells Adoptive T cell Transfer (melanoma) Vaccine PAP-loaded DCs (prostate)

- Innate Immunity & Inflammation can promote or suppress cancer
- Manipulating immunity can promote or suppress cancer
- Understanding of inflammatory cells & molecules in cancer is limited but growing, allowing therapeutic intervention