

Immunotherapy for the Treatment of Lung Cancer

Sarah B. Goldberg, MD

Associate Professor of Medicine (Medical Oncology)

Yale School of Medicine

#LearnACI

Society for Immunotherapy of Cancer

- Consulting Fees: AstraZeneca, Blueprint, Bristol-Myers Squibb, Boehringer Ingelheim
- Contracted Research: AstraZeneca, Boehringer Ingelheim
- I will be discussing non-FDA approved indications during my presentation.

Lung cancer

sitc

Society for Immunotherapy of Cancer

Treatment options for NSCLC

Local disease

- Surgery
- Stereotactic body radiation therapy
- Chemotherapy

Metastatic disease

- Chemotherapy
- Targeted therapies
- Immunotherapy
- Radiation therapy

Stage III unresectable disease

- Concurrent chemo-radiation
- Immunotherapy

Metastatic NSCLC treatment options overview

Drug type	Molecular format	Administration route	Example for NSCLC	Typical dosing regimen
Chemotherapy	Small molecule	Intravenous, occasionally oral	Nab-paclitaxel	100 mg/m ² on days 1, 8, 15 of 21-day cycle
Targeted therapy	Small molecule	Oral	Osimertinib (kinase inhibitor)	80 mg tablet once a day
Targeted antibody therapy	Antibody	Intravenous	Bevacizumab (VEGF-A inhibitor)	15 mg/kg Q3W
Immune checkpoint inhibitor	Antibody	Intravenous	Pembrolizumab (PD-1 inhibitor)	200 mg Q3W or 400 mg Q6W

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

Immunotherapy for first-line treatment of metastatic NSCLC

Drug	Indication	Dose
Pembrolizumab	1 st line metastatic NSCLC with PD-L1 TPS ≥ 1% and no EGFR/ALK mutations	200 mg Q3W or 400 mg Q6W
Atezolizumab	1 st line metastatic NSCLC with PD-L1 ≥ 50% of tumor cells or ≥ 10% of immune cells with no EGFR/ALK mutations	840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Nivolumab + ipilimumab	1 st line metastatic NSCLC with PD-L1 ≥1% and no EGFR/ALK mutations	Nivolumab 3 mg/kg Q2W + ipilimumab 1 mg/kg Q6W
Nivolumab + ipilimumab + platinum- doublet chemotherapy	1 st line metastatic NSCLC with no EGFR/ALK mutations	Nivolumab 360 mg Q3W + ipilimumab 1 mg/kg Q6W + 2 cycles of chemotherapy
Pembrolizumab + pemetrexed + platinum	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	200 mg Q3W or 400 mg Q6W
Pembrolizumab + carboplatin + paclitaxel/nab-paclitaxel	1 st line metastatic squamous NSCLC	200 mg Q3W or 400 mg Q6W
Atezolizumab + bevacizumab + paclitaxel + carboplatin	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	For 4-6 cycles: atezolizumab 1200 mg Q3W + chemotherapy + bevacizumab; Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Atezolizumab + nab-paclitaxel + carboplatin	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	For 4-6 cycles: atezolizumab 1200 mg Q3W + chemotherapy Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W

Brief aside: PD-L1 TPS vs CPS

 $TPS = \frac{\# of \text{ PD-L1 positive tumor cells}}{number of viable tumor cells} \times 100$ $\frac{\# of PD-L1 \text{ positive cells (tumor cells, lymphocytes, macrophages)}}{total number of tumor and immune cells} \times 100$ CPS =PD-L1-positive immune cell PD-L1-negative immune cell $TPS = \frac{6 \text{ positive tumor cells}}{14 \text{ total tumor cells}} \times 100 = 43$ PD-L1-positive tumor cell PD-L1-negative tumor cell $CPS = \frac{6 \text{ positive tumor cells+2 positive immune cells}}{22 \text{ total cells}} \times 100 = 36$

Treatment Naïve Regimens: Competing Strategies in NSCLC by biomarker status

PD-L1-selected	PD-L1-unselected
Nivolumab + ipilimumab	Nivolumab + ipilimumab + platinum-doublet
CheckMate 227	<i>CheckMate 9LA</i>
Pembrolizumab	Pembrolizumab + chemotherapy
KEYNOTE-024, -042	KEYNOTE-189, -407
Atezolizumab	Atezolizumab + bevacizumab + chemotherapy
IMpower110	IMpower150
	Atezolizumab + chemotherapy Impower130

CheckMate 227: Ipilimumab + nivolumab vs chemotherapy for 1L NSCLC

Ramalingam, ASCO 2020.

© 2020–2021 Society for Immunotherapy of Cancer

#LearnACI

KEYNOTE-024: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 50% NSCLC

KEYNOTE-042: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 1% NSCLC

Survival benefit seemed to be driven by the TPS ≥ 50% subset with little benefit witnessed in the subset TPS = 1 - 49%

IMpower110: Atezolizumab vs chemotherapy in 1L NSCLC

SP142 (TC3 or IC3-WT)^a

	Atezo (n = 107)	Chemo (n = 98)	
mOS, mo	20.2	13.1	
HR♭	0.5	59	
(95% CI)	(0.40, 0.89)		

SP142 (TC1/2/3 or IC1/2/3-WT)^a

	Atezo (n = 277)	Chemo (n = 277)
mOS, mo	17.5	14.1
HR♭	0.	83
(95% CI)	(0.65,	1.07)

TC3	TC <u>></u> 50%
IC3	IC <u>></u> 10%
TC2/3	TC <u>≥</u> 5%
IC2/3	IC <u>≥</u> 5%
TC1/2/3	TC <u>></u> 1%
IC1/2/3	IC <u>></u> 1%

Treatments <u>not</u> reliant on PD-L1 expression

CheckMate 9LA: Nivolumab/Ipilimumab + limited chemo

	NIVO + IPI + chemo (n = 361)	Chemo (n = 358)	
ORR, n (%)	138 (38)	89 (25)	
Odds ratio (95% CI)	1.9 (1.4-2.6)		
BOR, n (%) CR PR SD	8 (2) 130 (36) 164 (45)	4 (1) 85 (24) 185 (52)	
PD	32 (9)	45 (13)	
DCR, n (%)	302 (84)	274 (76)	

Reck M et al, ASCO 2020.

KEYNOTE-189: Pembrolizumab/chemotherapy vs Chemotherapy Alone for Advanced Non-Squamous NSCLC

© 2020–2021 Society for Immunotherapy of Cancer

KEYNOTE-407: Pembrolizumab/Chemotherapy vs Chemotherapy Alone for Advanced Squamous-Cell NSCLC

2 . /	No of Events/		
Subgroup	No. of Patients	Hazard Ratio for De	ath (95% CI)
Overall	205/559		0.64 (0.49-0.85
Age			
<65 yr	88/254	_	0.52 (0.34-0.80
≥65 yr	117/305		0.74 (0.51-1.07
Sex			
Male	167/455		0.69 (0.51-0.94
Female	38/104		0.42 (0.22-0.81
ECOG performance-status se	core		
0	48/163		0.54 (0.29-0.98
1	157/396		0.66 (0.48-0.90
Region of enrollment			
East Asia	34/106		0.44 (0.22-0.89
Rest of the world	171/453		0.69 (0.51-0.93
PD-L1 tumor proportion sco	re		
<1%	73/194		0.61 (0.38-0.98
≥1%	129/353		0.65 (0.45-0.92
1-49%	76/207		0.57 (0.36–0.90
≥50%	53/146		0.64 (0.37-1.10
Taxane-based drug			
Paclitaxel	140/336		0.67 (0.48-0.93
Nab-paclitaxel	65/223		0.59 (0.36–0.98
		0.1 0.5 1.0	
		Pombrolizumah Combination Pl	acaba Combination
		Rettor	Bottor

IMpower150: Atezolizumab/Carboplatin/ Paclitaxel/Bevacizumab vs Carboplatin/Paclitaxel/ Bevacizumab in Advanced Non-Squamous NSCLC

PD-L1-High (TC3 or IC3) WT

Subgroup

Landmark OS, %	Arm B: atezo + bev + CP	Arm C: bev + CP	
12-month	67%	61%	
18-month	53%	41%	- (95
24-month	43%	34%	- Media

n (%)^a

136 (20%)

In favor of Arm B: In favor of Arm C atezo + bey + CP bey + CP

0.70

Socinski et al, NEJM 2018 © 2020–2021 Society for Immunotherapy of Cancer #LearnACI

20

IMpower130: Atezolizumab + chemo vs chemo alone for non-squamous NSCLC

	A tez olizumab plu	s chemotherapy group	Chemotherapy gr	roup		Hazard ratio (95% C
	Events/number of patients	Median overall survival, months	Events/number of patients	Median overall survival, months		
Sex						
Female	83/185	21-4	52/94	12-8		0.66 (0.46-0.93)
Male	143/266	16-0	79/134	14-2	↓	0.87 (0.66-1.15)
Age				-	•	
<65 years	108/227	19-2	63/114	16-6	⊢	0.79 (0.58-1.08)
≥65 years	118/224	16-1	68/114	12-6		0.78 (0.58-1.05)
ECOG PS*					•	
0	88/189	20-8	45/91	19-7		0.85 (0.59-1.22)
1	138/261	15-2	85/136	11-9		0.77 (0.58-1.00)
2		NA	1/1	NA	•	NA
Tobacco use history						
Never	21/48	28-2	10/17	19·5	_	0.55 (0.26-1.19)
Current or previous	205/403	18-1	121/211	13-9	▲	0.81 (0.65-1.02)
No liver metastasis	174/382	21-1	109/197	15-2		0.73 (0.57-0.92)
at enrolment					•	
Liver metastasis	52/69	10-0	22/31	8-8	b	1.04 (0.63-1.72)
at enrolment	2-1-2				r -	
PD-L1-high	43/88	17-3	23/42	16-9		0.84 (0.51-1.39)
PD-L1-low	54/128	23.7	33/65	15.9	••••	0.70 (0.45-1.08)
PD-L1-negative	129/235	15-2	75/121	12-0	⊢	0-81 (0-61-1-08)
Intention-to-treat	226/451	18-6	131/228	13.9		0.79 (0.64-0.98)
wild-type population					•	
				0.1	1	
					←	\rightarrow

Favours atezolizumab Favours chemotherapy plus chemotherapy

Immunotherapy for relapsed/refractory NSCLC

Drug	Indication	Dose
Nivolumab	Metastatic squamous or non- squamous NSCLC with progression after chemotherapy (2 nd line)	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Metastatic NSCLC with progression after chemotherapy and PD-L1 ≥ 1%	200 mg Q3W or 400 mg Q6W
Atezolizumab	Metastatic NSCLC with progression after Pt-chemotherapy and targeted therapy if EGFR/ALK mutation- positive	840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W

Second-line use of ICIs in NSCLC

Study	Treatment arms	ORR	Median PFS (months)	Median OS (months)
CheckMate 017 and	Nivolumab	19%	2.56	11.1
CheckMate 057	Docetaxel	11%	3.52	8.1
KEYNOTE-010	Pembrolizumab	18%	4.0	12.7
(PD-L1 TPS ≥ 1%)	Docetaxel	9%	4.0	8.5
	Atezolizumab	14%	2.8	13.8
ΟΑΚ	Docetaxel	13%	4.0	9.6

Vokes, Ann Oncol 2018. Herbst, Lancet 2016. Fehrenbacker, J Thorac Oncol 2018.

© 2020–2021 Society for Immunotherapy of Cancer

Immunotherapy for stage III NSCLC

Drug	Indication	Dose
Durvalumab	Stage III NSCLC, ineligible for surgery and without progression after chemoradiation	10 mg/kg Q2W
Pembrolizumab	1 st line stage III NSCLC (not candidate for resection or definitive chemoradiation) with PD-L1 TPS ≥ 1%	200 mg Q3W or 400 mg Q6W

PACIFIC: durvalumab consolidation therapy for stage III NSCLC

Antonia, N Engl J Med 2017. Gray, J Thorac Oncol 2020.

© 2020–2021 Society for Immunotherapy of Cancer

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

Small cell lung cancer

- Median survival 1-2 years after diagnosis
- Until recently, only one FDA-approved 2nd line option: topotecan – DOR: 3.3 months
- Recent approvals of immunotherapies mark the first progress in decades

Approved checkpoint inhibitors in SCLC

Drug	Indication	Dose
Nivolumab	Metastatic small cell lung cancer with progression on Pt-chemotherapy and one other therapy (3rd line)	240 mg Q2W
Pembrolizumab	Metastatic small cell lung cancer with progression on Pt-chemotherapy and one other therapy (3rd line)	200 mg Q3W
Atezolizumab + carboplatin + etoposide	1 st line extensive stage SCLC	For 4 cycles: atezolizumab 1200 mg + carboplatin + etoposide Q3W Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Durvalumab + etoposide + carboplatin/cisplatin	1st line extensive stage SCLC	For 4 cycles: 1500 mg durvalumab Q3W + chemotherapy; Maintenance: 1500 mg durvalumab Q4W

Front-line ICIs in SCLC

ACCC

Huang, J Hematol Oncol 2020.

© 2020–2021 Society for Immunotherapy of Cancer

#LearnACI

notherapy of Cancer

Later-line ICIs in SCLC

Ready, J Thorac Oncol 2019. Chung, J Thorac Oncol 2020. Ott, J Clin Oncol 2017. © 2020–2021 Society for Immunotherapy of Cancer

#LearnACI

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

In development: answering outstanding questions

- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities

In development: answering outstanding questions

• Biomarker-driven treatment

• Timing of different treatments and combinations

Society for Immunotherapy of Cance

In development: answering outstanding questions

- Biomarker-driven treatment
- Timing of different treatments and combinations

INSIGNIA trial

In development: answering outstanding questions

- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities radiation and ICIs

Axillary radiation treatment field from September-October 2017 demonstrating overlap with peripheral lung.

Chest CT performed 5 months after completing right axillary radiotherapy (March 2018) and 1.5 months after initiating nivolumab therapy

Schoenfeld, J Immunother Cancer 2019.

© 2020–2021 Society for Immunotherapy of Cancer

Conclusions

- NSCLC has been a proving ground for checkpoint inhibitors
- Many front-line options available for NSCLC
- Clear-cut biomarkers still lacking
- SCLC is beginning to benefit from immune checkpoint inhibitor treatments

Brahmer et al. Journal for ImmunoTherapy of Cancer (2018) 6:75 Journal for ImmunoTherapy https://doi.org/10.1186/s40425-018-0382-2 of Cancer **POSITION ARTICLE AND GUIDELINES Open Access** CrossMark The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC) Julie R. Brahmer¹, Ramaswamy Govindan², Robert A. Anders³, Scott J. Antonia⁴, Sarah Sagorsky⁵, Marianne J. Davies⁶, Steven M. Dubinett⁷, Andrea Ferris⁸, Leena Gandhi⁹, Edward B. Garon¹⁰, Matthew D. Hellmann¹¹, Fred R. Hirsch¹², Shakuntala Malik¹³, Joel W. Neal¹⁴, Vassiliki A. Papadimitrakopoulou¹⁵, David L. Rimm¹⁶, Lawrence H. Schwartz¹⁷, Boris Sepesi¹⁸, Beow Yong Yeap¹⁹, Naiyer A. Rizvi²⁰ and Roy S. Herbst^{21*}

Case Study

Case Study

- Mr. P is a 68 year old man with a 40 pack-year smoking history and a history of psoriatic arthritis (previously on prednisone and Humira >5 years ago), who presents with fatigue, headaches and altered mental status
- Brain MRI demonstrates 8 brain lesions, the largest 1.5cm with surrounding edema
- CT chest/abdomen/pelvis shows a 3cm mass in the right upper lobe along with a pleural effusion, hilar and mediastinal adenopathy, liver and adrenal metastases
- He undergoes a biopsy of a liver lesion and pathology shows adenocarcinoma, positive for CK7 and TTF-1, consistent with lung primary
- Molecular testing: PD-L1 80%, KRAS G12C mutation detected
- He is treated with SRS to the brain metastases
- He presents to your office with resolution of his neurologic symptoms and a performance status of 1

Question 1: What would you treat him with for first-line therapy of metastatic lung adenocarcinoma?

- A. Pembrolizumab
- B. Carboplatin/pemetrexed
- C. Carboplatin/pemetrexed/pembrolizumab
- D. Nivolumab/ipilimumab
- E. Carboplatin/pemetrexed/nivolumab/ipilimumab

He is treated with pembrolizumab monotherapy and has a fantastic response to treatment with significant clinical and radiographic improvement. About 6 months after starting treatment he reports joint pain in his shoulders and ankles limiting his ability to walk.

Question 2: What would you do next?

- A. Continue pembrolizumab
- B. Hold pembrolizumab
- C. Start prednisone
- D.B and C

Pembrolizumab is held and he is started on prednisone with resolution of joint pain. He is able to taper off steroids after several weeks.

Question 3: Now what would you do?

- A. Restart pembrolizumab
- B. Continue to hold pembrolizumab
- C. Start an additional immunosuppressive agent

He is restarted on pembrolizumab and continues to have stable disease 2 years after starting treatment. He does have intermittent mild joint pain but has a good quality of life.

Question 3: What is your next step?

- A. Stop pembrolizumab
- B. Continue pembrolizumab
- C. Switch to chemotherapy

