Rakesh K. Jain, PhD **Steele Labs for Tumor Biology Massachusetts General Hospital Harvard Medical School**

jain@steele.mgh.harvard.edu

Normalizing the Tumor Microenvironment to Improve Cancer Immunotherapy: **Bench to Bedside**

> LUDWIG CANCER RESEARCH

Harvard

Disclosure Information

- Board of Trustees Tekla Healthcare Investors, Tekla Life Sciences Investors, Tekla Healthcare Opportunities Funds, and Tekla World Healthcare Fund
- SAB/Consultant Accurius, Elpis, Innocoll, SPARC, SynDevRx and Twentyeight-Seven
- Equity Accurius, Enlight, and SynDevRx
- Grant Böhringer-Ingelheim
- I'll discuss off-label use of losartan

May 3, 2019

Estimation of the Percentage of US Patients With **Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs**

Alyson Haslam, PhD¹; Vinay Prasad, MD, MPH^{2,3,4,5}

> Author Affiliations | Article Information

JAMA Netw Open. 2019;2(5):e192535. doi:10.1001/jamanetworkopen.2019.2535

- from 1.54% in 2011 to 43.63% in 2018.
- 0.14% in 2011 to 12.46% in 2018.

Cancer patients eligible for checkpoint inhibitors increased

Patients who respond to checkpoint inhibitors increased from

Tumor Microenvironment

Abnormal blood vessels lead to impaired blood flow, resulting in hypoxia & low pH and poor delivery of molecules and cells

Cell (2014) Cancer Jain,

Hypoxia and low pH contribute to immunosuppressive tumor microenvironment

Fukumura, Kloepper, Amoozgar, Duda and Jain, Nature Reviews Clinical Oncology (2018)

Hypoxia and low pH also cause...

apoptosis/autophagy

HYPOTHESIS: Improving vascular function can reprogram the TME into an immunosupportive milieu

Two strategies to improve function of tumor blood vessels

Jain, Nature Medicine (2001); Science (2005, 2019)

Vascular Normalization

Normalization of Vessels in Response to Antiangiogenic Therapy

Vakoc, Lanning et al, Nature Medicine (2009)

MGH/DF Clinical Collaborators and Patients

Agent / Cancer Type	Rectal Cancer	Brain tumors	Breast Cancer	Upper
Bevacizumab (Genentech)				6
Cediranib (AstraZeneca)	Willett	Batchelor	Krop	
Sunitinib (Pfizer)				
Sorafenib (Bayer/Onyx)	Clark	Loofflor		Ry
Ramucirumab (ImClone)		LUEIIIEI	Winer	R
Vatalanib (Novartis)		CES)		Ferna del-C
Vandetanib (AstraZeneca)	Meyerhardt	Sorensen	Tolaney	
Plerixafor (Genzyme)				Ha
Losartan/Chemo/ Proton Therapy	Lauwers	Wen		

Increase in tumor blood perfusion or oxygenation correlates with better outcome after anti-VEGF therapy

Cancer type	Agent(s)	Imaging parameter	Outcome measure	Reference
Recurrent GBM	Cediranib	Blood flow (MRI)	↑ PFS OS	Sorensen <i>et al.,</i> <i>Cancer Res</i> 2012
Newly diagnosed GBM	Cediranib with chemoradiotherapy	Blood flow (MRI)	PFS OS	Batchelor <i>et al</i> ., <i>PNAS</i> 2013
Advanced non-small cell lung cancer (NSCLC)	Bevacizumab alone and then with chemotherapy	Blood flow (dCT after bev alone)	ORR	Heist <i>et al</i> ., PNAS 2015
Chemo-naive breast cancer	Neoadjuvant bevacizumab alone and then with chemotherapy	Oxygenation (FMISO-PET after bev alone)	ORR	Garcia-Foncillas <i>et al., ASCO</i> 2012
Triple negative breast cancer	Neoadjuvant bevacizumab alone and then with chemotherapy	Vessel density & pericyte coverage (IHC in serial biopsies after bev alone)	Path response (Miller-Payne score)	Tolaney <i>et al</i> ., <i>PNAS</i> 2015

Vascular normalization reprograms the tumor immune microenvironment

al, PNAS, 2012

Huang et

Anti-VEGFR2 treatment (D10) combined with immunotherapy doubled survival

al, PNAS, 2012 et Huang

FDA-Approvals of drugs targeting the VEGF/VEGFR and PD-1/PD-L1 pathways

Combination	Disease	ORR	PFS	OS	Ref.	FDA app date
Bevacizumab/ Atezolizumab/ Chemotherapy	NSCLC	55% vs. 42% (bev + chemo)	8.3 m vs. 6.8 m (bev + chemo)	19.2 m vs. 14.7 m (bev + chemo)	Socinski et al., <i>N</i> <i>Engl J Med</i> 2018	Dec 7, 2
Axitinib/ Pembrolizumab	RCC	59.3% vs. 35.7% (sunitinib)	15.1 m vs. 11.1 m (sunitinib)	Not reached (NR)	Rini et al., <i>N Engl J Med</i> 2019	Apr 30,
Axitinib/ Avelumab	RCC	51.4% vs. 25.7% (sunitinib)	13.8 m vs. 8.4 m (sunitinib)	NR	Motzer et al., <i>N Engl J Med</i> 2019	May 14,
Bevacizumab/ Atezolizumab	HCC	27% vs. 12% (sorafenib)	6.8 m vs. 4.5 m (sorafenib)	19.2 m vs. 13.2 m (sorafenib)	Finn et al., <i>N Engl J Med</i> 2020	May 29,
Cabozantinib/ Nivolumab	RCC	55.7% vs. 27.1% (sunitinib)	16.6 m vs. 8.3 m (sunitinib)	NR	Choueiri et al., <i>ESMO</i> 2020 (Abstract 6960_PR)	Jan 22,
Lenvatinib/ Pembrolizumab	Endometrial Cancer (not MSI-H or dMMR)	30% vs. 15% (chemo)	6.6 m vs. 3.8 m (chemo)	17.4 m vs. 12.0 m (chemo)	Makker et al., SGO 2021 (Abstract 11512)	July 21,
Lenvatinib/ Pembrolizumab	RCC	71% vs. 36% (sunitinib)	29.9 m vs. 9.2 m (sunitinib)	NR	Motzer et al., <i>N Engl J Med</i> 2021	Aug 10,

Vascular Normalization Pathways

Two strategies to improve function of tumor blood vessels

Jain, Nature Medicine (2001); Science (2005, 2019)

Vascular Normalization

Losartan: Angiotensin II receptor type I blocker

Chauhan, Martin et al, Nature Comm (2013)

Decreasing matrix increases tumor blood flow

Pre-Losartan

vessels matrix

Post-Losartan

Chauhan, Martin et al, Nature Comm (2013)

Pancreatic Ductal Adenocarcinoma (PDAC)

5-Year Survival Rates

PDAC CLINICAL TEAM: Phase I/II Trial of Losartan, FOLFIRINOX and CRT in Locally Advanced Pancreatic Cancer (LAPC)

Unprecedented R0 Resection Rates in Locally-Advanced Pancreatic Cancer Patients

Murphy et al., JAMA Oncology 2019

ChemoRadioTherapy (CRT) + losartan (L) increased CD3+CD8+ T cell infiltration and decreased FOXP3 compared to CRT

CRT+Losartan (CRTL)

CD3 CD8 CD3CD8

DO NOT POST (unpublished data)

Adding losartan to CRT + aPD1 increased survival and proliferation of CD8⁺ T cells in murine PDAC

PDAC: KPC001; n = 8 animals/arm; Rx started on day 10 after implantation (tumors \sim 5 mm)

DO NOT POST (unpublished data)

Stand-Up-2-Cancer multi-institutional randomized clinical trial of losartan (160 Patients)

Stratify:

-borderline resectable -locally advanced

(NCT03563248) **PI: Ted Hong**

University of Colorado Cancer Center

RETROSPECTIVE ANALYSIS of ~11,000 MGB PATIENTS TREATED WITH ICBs

Cancer types	Median OS (months)		
	ARB/ACE-I Hypertensive	Non-ARB/ACE-I Hypertensive	
GI	11.9	7.9	
GU	28.2	17.0	

Drobni et al, Europ J Cancer (2021)

Critical Importance of Using Orthotopic **Tumors in Immunology** Studies

(*Ho et al, PNAS* 2021)

Examples of publications using ectopic (subcutaneous) tumors for immunotherapy studies

Authors	Immunotherapy	Models	Journal	Year	Citation
Banta KL, Chiang Y, Mellman I.	ICB (PD-[L]1 and TIGIT)	CT26 / s.c.	Immunity	2022	55: 512–526
Spencer CN, Trinchieri G, Daniel CR, Wargo JA.	ICB (PD-L1)	MC38 (BP*) / s.c.	Science	2021	374: 1632-1640
Wang Y, Piva M, Moriceau G, Lo RS.	ICB (PD-[L]1, CTLA-4)	CT26, KP4662, melanomas / s.c.	Cancer Cell	2021	39: 11375-87
Hong A, Lo RS.	ICB (PD-L1)	CT26, KPC	Cancer Discovery	2021	11: 715-35
Das K, Derouazi M, Wollmann G.	Oncolytic vaccine	MC38 (E.G7#, B16) / s.c.	Nature Communications	2021	12: 5195
Wang Y, Hastings WD, Goldoni S.	ICB (PD-1)	MC38 (CT26, 4T1) / s.c.	Scientific Report	2021	11: 1399
Baharom F, Seder RS.	SNP vaccine	MC38 / s.c.	Nature Immunology	2021	22: 41-52
Jiao S, Sharma P.	ICB (PD-1, CTLA-4)	Myc-CaP / s.c., bone	Cell	2019	179: 1177-90
Lau J, Kim M, Schmidt M.	PD-L1 deficiency	MC38 (CT26) / s.c.	Nature Communications	2017	8: 14572
lida N, Trinchieri G, Goldszmid RS.	CpG-oligonucleotide immunotherapy	MC38 (EL4) / s.c.	Science	2013	342: 967-70

*BP, BRAF^{V600E}/PTEN-/-; #Lymphoma

bitor + aPDL1 effective in SQ model RC but failed in a phase III trial

MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination (APC-with PD-LP Checkpoint Blockade

le n e Flaung, 7agai Yang,¹ Erin McNamara,¹ Rebecca Hong,¹ Marina Moskalenko,¹ ' Heather Maecker,^{1,2} Bryan A. Irving,^{1,3} Jeong M. Kim,¹ Marcia Belvin,¹ and Ira Mellman^{1,*} ¹Genentech, 1 DNA Way, South San Francisco, CA 94080, USA ²Present address: Gilead, Foster City, CA 94404, USA ³Present address: Cytomics Therapeutics, South San Francisco, CA 94080, USA *Correspondence: mellman.ira@gene.com http://dx.doi.org/10.1016/j.immuni.2016.01.024

Highlights

- Pharmacologic inhibition of MEK potentiates rather than hinders anti-tumor T cells
- MEK inhibitors nonetheless suppress anti-tumor priming in lymph nodes in vivo
- MEK inhibitors potentiate anti-tumor T cells by impairing **TCR-driven** apoptosis
- MEK inhibition combines with anti-PD-L1 treatment to yield durable tumor regression

Immunity 44, 609–621, March 15, 2016

Atezolizumab with or without cobimetinib versus regoratenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial

Cathy Eng 1, Tae Won Kim 2, Johanna Bendell 3, Guillem Argilés 4, Niall C Tebbutt 5, Maria Di Bartolomeo 6, Alfredo Falcone 7, Marwan Fakih 8, Mark Kozloff 9, Neil H Segal 10, Alberto Sobrero 11, Yibing Yan 12, Ilsung Chang 12, Anne Uyei 12, Louise Roberts 12, Fortunato Ciardiello 13, IMblaze370 Investigators

Conclusions: IMblaze370 did not meet its primary endpoint; atezolizumab+cobimetinib and atezolizumab monotherapy did not demonstrate statistically significant prolonged OS benefit vs regorafenib in the ITT population. PFS and ORR were similar across treatment arms. No new safety signals were observed and the safety profiles of atezolizumab+cobimetinib combination and atezolizumab monotherapy were consistent with previous findings.

ICB is efficacious in pMMR CRC grown SQ but not in liver mets from CRC

Ho et al., *PNAS (2021)*

Dendritic cell infiltration into pMMR CRC liver mets improves ICB efficacy

SL4 liver metastases

CT26 liver metastases

Ho et al., *PNAS (2021)*

(Nature Reviews Drug Discovery 2011)

Normalization strategies can also benefit treatment of a number of diseases characterized by abnormal vessels that afflict 500 million people worldwide

Example #1

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Hearing Improvement after Bevacizumab in Patients with Neurofibromatosis Type 2

Scott R. Plotkin, M.D., Ph.D., Anat O. Stemmer-Rachamimov, M.D., Fred G. Barker II, M.D., Chris Halpin, Ph.D., Timothy P. Padera, Ph.D., Alex Tyrrell, Ph.D., A. Gregory Sorensen, M.D., Rakesh K. Jain, Ph.D., and Emmanuelle di Tomaso, Ph.D.

N Engl J Med 2009;361:358-67. Copyright © 2009 Massachusetts Medical Society.

NF2 Vestibular Schwannomas: Losartan treatment restores hearing

Frequency (kHz)

Example #2

Lei Xu, MD, PhD

(NCT01199978)

Science Translational Medicine (2021)

Example #2 Losartan increases drug delivery in TB

Tumor

Drug delivery

TB Granuloma

Bedaquiline (BDQ) Delivery

data O blish idun) S O 0

[THE PROBLEM] ABNORMAL VESSELS MAKE TROUBLE

Malformed vasculature inside a tumor turns a bad situation worse (boxes). Flaws in the organization and functioning of blood vessels create barriers that prevent therapies from reaching tumor cells and foster an environment where those treatments are less effective. These unnatural internal conditions also contribute to malignant properties of the cancer itself.

VESSEL FUNCTION

- Oversize pores in vessel walls leak fluid into interstitial areas (between cells, vessels and other structures)
- High interstitial fluid pressure blocks transport of drugs and oxygen out of vessels to tumor tissue

Immature microvessel

VESSEL ORGANIZATION

- Oversize diameter and chaotic layout create irregular blood flow
- Absent or immature vessels make some tumor regions impenetrable

TUMOR MICROENVIRONMENT

- Dysfunctional vessels produce conditions of low oxygen (hypoxia) and high acidity
- Radiation and certain chemotherapies that require oxygen to kill tumor cells are ineffective
- Immune cells that might attack cancer cells cannot function in an acidic environment and without oxygen
- Hypoxia causes changes in gene activity that promote tumor cell migration toward healthy tissues

Lymphatic vessel

High interstitial fluid pressure

Impaired transport of drugs and oxygen

Abnormal blood vesse

Leaky oversize pore

Tumor

Endothelial cell

Swelling

Fluid and cells escape

Healthy tissue

FLUID BUILDUP

 Tumor tissue swells, causing painful symptoms

 Fluid pressure drives tumorgenerated proteins and cells toward healthy tissues and into lymphatic vessels, increasing risk of metastasis Jain, Scientific American, 2008

KEITH KASNOT

OUR SOLUTION

Abnormal TME

- ↑Solid stress, fibrosis
- ↑Vessel compression
- [†]Poor perfusion, hypoxia
- ↑VEGF, vessel permeability
- ↓CTL delivery
- ↑PD-L1 expression
- ↑Immunosuppression
- ↓CTL adhesion, transmigration

Normalized TME

- ↓ Mechanical stress
- ↓ Vessel compression
- ↑ Perfusion, oxygenation
- ↓ Vessel permeability
- ↑ CTL delivery
- ↓ PD-L1 expression
- ↑ CTL activation
- ↑ Endothelial adhesion, CTL infiltration

Munn and Jain, **Science (2019)**

Acknowledgments

PITTSBURGH PENNSYLVANIA

Postdoctoral Fellows and Junior Faculty

Ager E 2011-13 Alexandrakis G 2001-04 Amoozgar Z 2015-Andersson P 2017-Askoxylakis V 2013-16 Babykutty S 2013-15 Badeaux M 2012-Batista Ana 2010-15 **Baxter L 1991-98** Berk D 1992-98 Bhaumik J 2010-11 **Bockhorn M 2000-02 Booth M 2003-06 Boucher Y 1988-98 Brown E 1999-05 Burton K 1999-01 Campbell R 1999-02** Chae S 2004-10 Chang Y 1998-00 Chauhan V 2012-Chattorioo S 2014-

100 Blossom Street, Cox 7

B Department of RaElesticin Ontology diation Oncology

ElmaBlopsbucesteele GoogBldsagmaStdeet Cox 7

Boston, Massachuse Boston, Massachusetts 02114

Email: jobs@steele.mgh.harvard.edu

Bostdoctoral Opportunitie MOR MCBOERNKIRPOHMENT VASCULAR BIOLO MATRIX BRIDGERIX BUILDER BUILDER BIOLOGIAR BIOLOGIA

MICERCOSORNERAR OBCORNEDWICHDE CONVERSING BRIEFE

The JAIN LAB (https://steelelabs.mgh.harvard.edu/rakesh jain/pi bio) in the STEELE LABORATORIES OF TUMOR BIOLOGY (https://steelelabs.mgh.harvard.edu) at MGH/Harvard Medical School invites applications for Postdoctoral Research Fellow positions.

Requirements: A PhD or MD/PhD is required. To apply, please send your CV, a career statement, a summary of your most significant research accomplishments (300 words) and the contact information of three references to: Steele Labs Recruiting jobs@steele.mgh.harvard.edu.

CHOOL HARVARD MEDICAL SCHOOL CHOOL

<u>vverk Cook Projessor of Kuulution</u>

Rakesh K. Jainlogh (D.mor Biology) Andrew Werk Cook Portoges Ender Radiat Steele Laboratories Oncology (Tumor Biology) Director, Edwin L. Steele Laboratories

