

AME-133: A Next-Generation Anti-CD20 Engineered for Enhanced Killer Function

International Society for Biological Therapy of Cancer November, 2004

Jim Breitmeyer

Antibody Therapy of Lymphoma

- Rituximab as first-generation biotherapeutic
 - Efficacious in chemoresistant NHL
 - Less toxic than most chemotherapies
 - Multiple potential antitumor activities
 - CDC- Complement dependent cytotoxicity
 - ADCC- Antibody dependent cytotoxicity
 - Direct apoptotic effect (with cross linking)
- Opportunities for improvement
 - Chimeric mouse/human structure
 - Modest affinity for CD20
 - Role of host immune system in efficacy
 - FcR influences response

Influence of FCγRIIIa Polymorphism on Rituximab Efficacy

- Clinical and molecular response to rituximab in chemo-naive follicular NHL
 - Cartron, Blood. 2002; 99:754-758
- Clinical response to rituximab in relapsed follicular NHL
 - Weng, JCO 2003; 21:3940-47
- Clinical response to rituximab in Waldenstrom's macroglobulinemia
 - Treon, ASH 2002, Poster #2002
- B cell depletion in SLE
 - Anolik, Arth Rheum. 2003; 48:455-459

Effect of FCγRIIIa (CD16) Genotype on Rituximab Therapy of NHL

	FCγRIIIa 1	58 Genotype
	<u>VV</u>	<u>VF or FF</u>
Prevalence n (%)	13(15)	74(85)
PR+CR M1-3 %	92 *	59
PR+CR M6 %	85*	45
PR+CR M9 %	75*	36
PR+CR M12 %	75*	26
*p < 0.05 VV vs. VF+FF		

Weng & Levy, J Clin Onc 21:3940-47, 2003

Progression Free Survival After Rituximab Correlates with FcγRIIIa Genotype

iSBTc San Francisco 11/04 Copyright© 2004

Weng & Levy, J Clin Onc 21:3940-47, 2003 5

AME & Antibody Engineering Opportunities

Addressed in anti-CD20 engineering

•Potency Association rate Dissociation rate Complement dependent cytotoxicity •Cell mediated cytotoxicity (ADCC) •Half-life Immunogenicity Framework chimeric residues Somatic mutations (framework, V/C) •Specificity (epitope, cross-reactions) Pharmaceutical properties Oxidation sites Deamidation sites •Glycosylation sites Protease sites •Solubility Production Cost of facilities and goods

AME Antibody Optimization Technology

- Generate DNA library with directed variability
- Express protein library
- Screen for desired activity
- Iterative cycles to optimize

Anti-CD20 Antibodies with Fully Human Frameworks and Increased Affinity

- Multiple high affinity variants identified
 - Variants provide tool for characterizing impact of affinity on ADCC, CDC, and apoptosis
- Fully human, common germline frameworks

iSBTc San Francisco 11/04 Copyright© 2004

Fc Optimization - Cell Based Primary Screening with Human PBMC

- >2,400 variants screened
- Multiple novel variants identified

	1	2	3	4	5	6	7	8	9	10	11	12	
Α			38.62	109.25	19.00	38.62	71.63	7.10	7.54	93.83	100.18		
В			-2.51	0.68	38.19	3.19	-6.19	50.48	102.02	99.37	72.03		
С			87.92	64.14	-4.60	73.30	77.68	77.89	70.41	93.29	93.95	93.76	1x wt
D			62.60	101.20	98.51	98.33	-9.62	91.19	114.40	83.05	101.06	97.76	1x wt
E			-0.48	-1.16	-4.58	-3.91	88.42	100.77	99.43	-3.91	-4.82	102.24	1x wt
F			-27.15	106.57	-0.27	113.76	-1.67	2.70	114.73	-4.14	107.90	155.00	2x wt
G			28.79	117.16	117.76	115.95	47.76	93.50	137.20	108.87	102.25	177.36	4x wt
Н			118.66	112.14	118.67	122.80	113.87	108.37	49.71	70.45	114.88		

% of Wild Type (Average)

AME-133 is More Potent than Rituxan in ex vivo ADCC

Human PBMCs and Wil-2S Target cells; mean +/- 1 SD

AME-133 Retains CDC Activity

Apoptosis

- Rituxan induces apoptosis of Ramos cells (weakly) in the absence of antibody cross-linking
- Induction of apoptosis is enhanced significantly by secondary cross-linking reagents
- AME anti-CD20 variants induce apoptosis in the presence of secondary cross-linking reagents

iSBTc San Francisco 11/04 Copyright© 2004

Summary

- Multiple characteristics of proteins can be improved significantly through optimization
 - Improved efficacy, safety, and potency
 - Enhanced convenience
 - Decreased manufacturing costs
 - Broadened intellectual property
 - Increased understanding of biology
- AME-133, an optimized anti-CD20, will be tested for clinical activity in CD20⁺ oncology indications

Jeffry Watkins Mary-Ann Campbell Barrett Allan David Marquis Brian Ondek

> Christopher Slapak Aaron Weitzman

Jim Breitmeyer Chief Medical Officer and Vice President, Pharmaceutical Operations Applied Molecular Evolution / Eli Lilly (858) 638-8511 jbreitmeyer@lilly.com

Humanization of Antibodies

- Reduces immunogenicity associated with murine Igs
 - CDR grafting typically diminishes affinity
 - Structural modeling is used to predict framework residues key for maintaining affinity

AME- Applied Molecular Evolution

- San Diego directed evolution company founded in 1989
 - All classes of protein therapeutics engineered
- Partnerships with MedImmune, Centocor, Eli Lilly, Bristol-Myers Squibb, Chiron, Seattle Genetics, CancerVax, Biosynexus
- Application of the protein engineering to in-house projects
 - A development function was added to go from gene to clinic
 - AME-527 (TNF, inflammation) & AME-133 (CD-20, oncology)
- AME and Eli Lilly and Company performed multiple collaborative projects
 - Successes led to discussion on broadened collaboration
 - AME was acquired by Lilly in 2004

