**Tipping The Immune System Balance In Favor Of Effective Cancer Immunotherapy** 

Elizabeth M. Jaffee, M.D. Professor of Oncology The Sidney Kimmel Cancer Center at Johns Hopkins

## Many Challenges For Developing Cancer Vaccines In The Clinics

- What are the "immune relevant" targets?
- What is the best vaccine approach?
- What are the best immune monitoring methods?
- What approaches will overcome immune tolerance and eradicate cancer?
- What approaches will prevent cancer?

## Many Challenges For Developing Cancer Vaccines In The Clinics

- What are the "immune relevant" targets?
- What is the best vaccine approach?
- What are the best immune monitoring methods?
- What approaches will overcome immune tolerance and eradicate cancer?
- What approaches will prevent cancer?

### Immune tolerance mechanisms are the major barriers for developing effective cancer vaccines

### • Systemic

- T regs
- Ineffective T cell activation
- Low avidity T cell availability
- Local at the tumor site
  - COX-2 pathways
  - T regs
  - T cell down regulatory signals (new B7 family members)
  - Down-regulatory cytokines
    - IL-10, TGF-beta, VEGF

### Immune tolerance mechanisms are the major barriers for developing effective cancer vaccines

- Systemic
  - T regs
  - Ineffective T cell activation
  - Low avidity T cell availability
- Local at the tumor site
  - COX-2 pathways
  - T regs
  - T cell down regulatory signals (new B7 family members)
  - Down-regulatory cytokines
    - IL-10, TGF-beta, VEGF

## Her2/neu in neu Transgenic Mice Provide a Model of Immune Tolerance



### **CY Given Prior to Priming Enhances The Anti-Tumor Effect Of The Vaccine**



#### Cy Enhances The Potency Of The Vaccine Through A Mechanism Distinct From Direct Tumor Lysis



# **Hypothesis:**

T regulatory cells suppress Cy plus vaccine induced HER-2/neu-specific immunity

## CD4+CD25+, FoxP3+ but not CD4+CD25-, FoxP3<sup>-</sup> T cells suppress CY+ vaccine induced anti-tumor immunity



## **Cyclophosphamide treatment transiently suppresses peripheral Tregs**



### Cy selectively deletes cycling T cells in tumor bearing mice



Dissecting the mechanisms of immune tolerance to HER-2/neu requires knowledge of HER-2/neu derived T cell epitopes

#### **Extracellular Domain**

#### **Intracellular Domain**



Ercolini et al, Journal of Immunology (2003); 170:4273-80.

# H-2D<sup>q</sup> MHC/RNEU<sub>420-429</sub> Tetramer



### **Can RNEU**<sub>420-429</sub> **T cells be isolated directly from vaccinated mice that are cured of their tumor?**



## **RNEU**<sub>420-429</sub>-specific T cells can be isolated from mice treated with Cy + vaccine





### Adoptively Transferred Tregs from Tolerized Mice Suppress RNEU<sub>420-429</sub>-Specific T Cells in Vaccinated Non-Tolerized Mice



**No Transfer** 

CD4+CD25+ T cells





# Summary of Mouse Data

- High avidity RNEU<sub>420-429</sub> T cells are suppressed rather than deleted in *neu* mice
- Inhibition of Tregs allows for the recruitment of high avidity T cells specific for the immunodominant epitope RNEU<sub>420-429</sub> to the immune response

Ercolini et al., J Exp Med, 2005

# Pancreas Cancer by Stage



# **Pancreatic Cancer Therapy**

Stage 1, 2, or 3 (Locoregional)

- Surgery
- Adjuvant chemoradiation
- 70-80% recurrence at 1 yr

Stage 4 (Metastatic)

- Gemzar +/- other
- Experimental therapy
- Palliation

## **Pancreas Cancer Team at Hopkins**

#### Surgery

- John Cameron
- Charles Yeo
- Steven Leach
- Kurt Campbell
- Pathology
  - Ralph Hruban
  - Scott Kern
  - Christine Iacobuzio Donahue
  - Anirban Maitra
- Gastroenterology
  - Marcia Canto
  - Sanjay Jaganneth
  - Michael Goggins
- Vaccine Team
  - Elizabeth Jaffee, Dun Laheru, Barb Biedrzycki, Beth Onners, Irena Tartakovksy, Shirley Siguoros, Sara Solt, Guanlan Huang

- Radiology
  - Elliott Fishman
  - Rich Wahl
- Genetics
  - Connie Griffin
  - Jennifer Axilbund
  - Alison Klein/Miriam Tillery
- Medical Oncology
  - Ross Donehower
  - Elizabeth Jaffee
  - Manuel Hidalgo
  - Dan Laheru
  - Wells Messersmith
- Radiation Oncology
  - Deborah Frassica
  - Fariba Asrari

# Design of Protocol J9617: A Phase I Study of an Allogeneic GM-CSF Vaccine



# Correlation of Post-Vaccination DTH with Disease-Free Survival



### **Functional Genomic Approach**



**ELISPOT Readout** 

# **Experimental Methods**

- Three day ELISPOT procedure
- **Day 1**: Coat plate with primary Ab
- **Day 2**: Pulse T2 cells with peptide and add freshly thawed and enriched CD8<sup>+</sup> T cells
- **Day 3**: Add secondary Ab and develop plate
- Developed plates are read using KS ELISPOT

# **Summary of Mesothelin Responses for 14 Patients**



484)

Mo=TyrosinaseA24<sub>(206-214)</sub>

# **Pre-clinical data driving the next** clinical trials

Design of a Phase II study of an Allogeneic GM-CSF Secreting Tumor Vaccine (GVAX) Alone or in Sequence with Cyclophosphamide for Metastatic Pancreatic Cancer Laheru, et al and Cell Genesys



**Cohort A treatment: 50x10<sup>7</sup> vaccine cells alone (30 patients)** 

Cohort B treatment: 250 mg/m<sup>2</sup> Cy given 1 day prior to vaccination with 50x10<sup>7</sup> vaccine cells (20 patients)

### **SUMMARY**

| Cohort                                     | Toxicity<br>Grade 1/2<br>Local                            | Serum<br>GM-CSF<br>Levels | Stable Dz<br>During<br>Therapy<br>(18 weeks) |
|--------------------------------------------|-----------------------------------------------------------|---------------------------|----------------------------------------------|
| Vaccine<br>Only<br>(30 Pts)                | Tolerated<br>well in Pts<br>with<br>≥2 prior<br>therapies | Peaked at 48<br>hours     | 16%                                          |
| Cy (250<br>mg/m2) +<br>Vaccine<br>(20 Pts) | Tolerated<br>well in Pts<br>with<br>≥2 prior<br>therapies | Peaked at 48<br>hours     | 40%                                          |

### Mesothelin specific T cells observed in predominantly Cy + vaccine treated patients



#### Solid line=Cy+vaccine Dashed line=vaccine only

### **Improved Survival Associated with Mesothelin-Specific T Cell Responses Following Vaccination**

| Patient | HLA-A<br>locus | # vaccinations | Mesothelin S | Survival<br>(mo) |              |               |       |
|---------|----------------|----------------|--------------|------------------|--------------|---------------|-------|
|         |                |                | Pre          | Vaccine 3        | Vaccine<br>6 | Follow-<br>up |       |
| 4.006   | A2             | 2              | 10           | NA               | NA           | NA            | 1.47  |
| 4.012   | A2             | 1              | 0            | NA               | NA           | NA            | 1.47  |
| 4.018   | A2             | 2 (+ Cy)       | 5            | 33               | NA           | NA            | 3.23  |
| 4.023   | A2             | 3 (+ Cy)       | 153          | 108              | NA           | NA            | 6.53  |
| 4.024   | A2             | 4 (+ Cy)       | 24           | 40               | NA           | NA            | 7.73  |
| 4.026   | A3             | 6 (+ Cy)       | 0            | 0                | 21           | 7             | 25+   |
| 4.028   | A3             | 3 (+ Cy)       | 7            | 13               | 19           | NA            | 8.13  |
| 4.033   | A2             | 6 (+Cy)        | 0            | 0                | 10           | 10            | 13.07 |

## **Future Directions**

- Assess T cell avidity differences in patients treated with Cy+vaccine versus vaccine alone
- Test combinations of vaccine with inhibitors of additional checkpoints
  - Systemic targets
  - Tumor micro-environment targets
- Test combinatorial immune based approaches at earlier stages of disease

# Acknowledgments

#### Jaffee Laboratory

- Todd Armstrong
- Anne Ercolini
- Priya Ganesan
- Lan-Qing Huang
- Brian Ladle
- Eric Lutz
- Luke Pfannanstiel
- Jennifer Uram
- Sara Solt
- Guanlan Huang

#### NCI SPORE Program Avon Foundation Dana and Albert Broccoli NCI RAID Program

### **Reilly Laboratory**

- Satoshi Murata
- Peter Kim

#### **Emens Laboratory**

• Elizabeth Manning

#### **Clinical Colleagues**

- Dan Laheru
- Ralph Hruban
- Mike Goggins
- Charlie Yeo
- John Cameron
- Barbara Biedrycki
- Irena Tarkofsky

#### Cell Genesys

### **Conflict of Interest Statement**

Under a licensing agreement between Cell Genesys and the Johns Hopkins University, the University is entitled to milestone payments and royalty on sales of the vaccine product described in this presentation. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.