

Immunotherapy for the Treatment of Hematologic Malignancies

Kathleen Dorritie, MD

Assistant Professor, Division of Hematology/Oncology University of Pittsburgh/UPMC Hillman Cancer Center

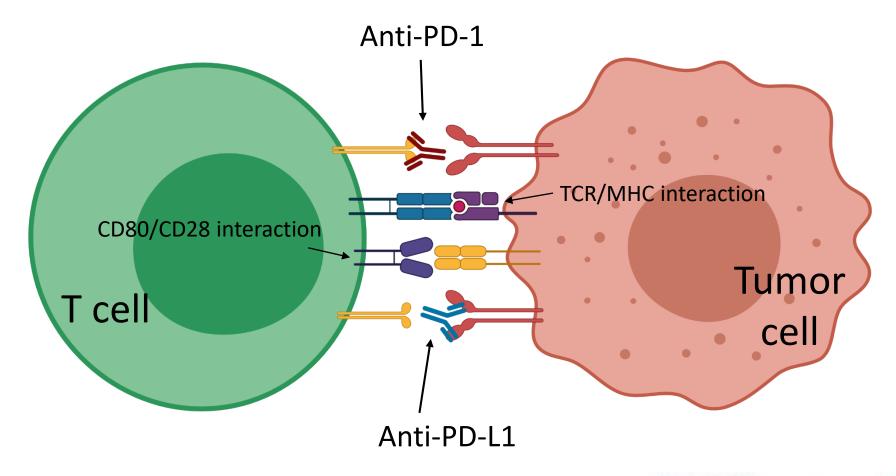
Disclosures

• Contracted Research: Research Funds paid to institution - Juno Therapeutics, Kite-Gilead, F. Hoffmann-La Roche (site PI on studies)

 I will be discussing non-FDA approved indications during my presentation.

Outline: Major immunotherapies under development

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies



Immune checkpoint inhibitors

FDA-approved checkpoint inhibitors: lymphoma

Drug	Indication	Dose
Nivolumab	Classical Hodgkin lymphoma , relapsed after HSCT and brentuximab vedotin or ≥3 previous therapies	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Adult/pediatric refractory classical Hodgkin lymphoma or relapsed after 3 previous therapies	200 mg Q3W or 400 mg Q6W adults 2 mg/kg (up to 200 mg) Q3W (pediatric)
Pembrolizumab	Adult/pediatric refractory primary mediastinal large B-cell lymphoma or relapsed after 2 previous therapies**	200 mg Q3W or 400 mg Q6W adults 2 mg/kg (up to 200 mg) Q3W (pediatric)

^{**}Not recommended for patients with PBMCL that require urgent cytoreductive therapy.

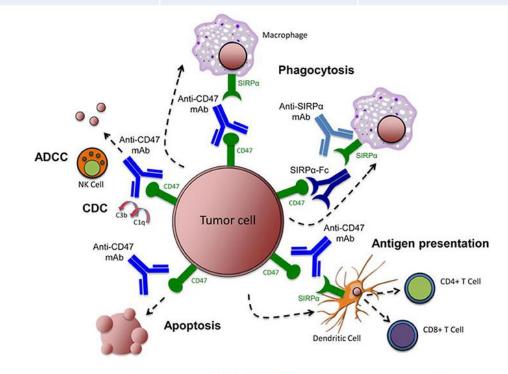
Efficacy of approved checkpoint inhibitors: lymphoma

Study	Treatment	Patient population	Overall response rate	Complete response rate	Landmark OS
CheckMate 205	Nivolumab	Brentuximab vedotin-naïve cHL	65%	29%	1-year: 92%
		Bretuximab vedotin after auto-HCT cHL	68%	13%	1-year: 93%
		Bretuximab vedotin before/after auto-HCT cHL	73%	12%	1-year: 90%
KEYNOTE-087	Pembrolizumab	cHL progressed after ASCT and BV	78.3%	26%	3-year: 86.3%
		cHL after salvage chemo and BV, ineligible for ASCT	64.2%	26%	3-year: 85.7%
		cHL progressed after ASCT without BV treatment	71.7%	31.7%	3-year: 87.6%
KEYNOTE-013	Pembrolizumab	PMBCL with relapse/ineligible for ASCT	48%	33%	1-year: 65%
KEYNOTE-170	Pembrolizumab	PMBCL ineligible for ASCT with progression on≥ 2 previous therapies	45%	13%	1-year: 58%

cHL: Classical Hodgkin lymphoma; PMBCL: primary mediastinal B cell lymphoma

In development: Immune checkpoint inhibitors in AML

Study	Population	Treatment(s)	ORR	Median OS (months)	Status	
NCT02775903	Untreated AML	Azacitidine + durvalumab	20%	13.0	Active, not recruiting	
		Azacitidine	23%	14.4	recruiting	
NCT02397720	Relapsed/refractory AML	Azacitidine + nivolumab	33%	6.4	Recruiting	
		Azacitidine + nivolumab + ipilimumab	44%	10.5		
NCT02768792	Relapsed/refractory AML	HiDAC followed by pembrolizumab	46%	8.9	Active, not recruiting	
NCT02845297	Relapsed/refractory AML	Azacitidine + pembrolizumab	31%	10.8	Recruiting	
	Newly diagnosed AML, <u>> 65</u> years of age		70.5%	13.1		



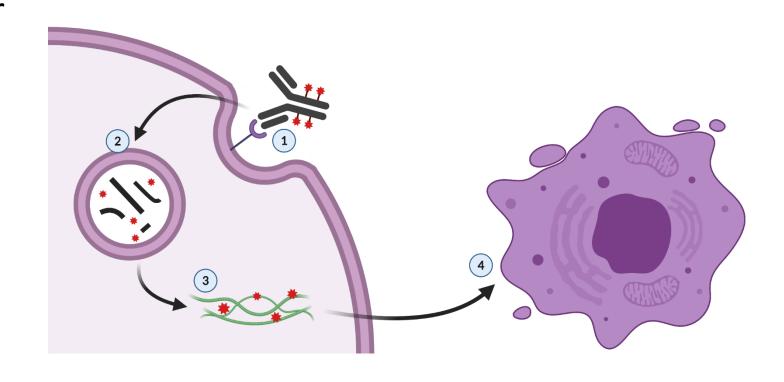
In development: Macrophage checkpoint: CD47

Treatment	Populations	ORR	CRR	Median DOR
Azacitidine +	Untreated MDS	91.7%	50%	NR (>4.9 months)
magroliumab	Untreated AML	63.6%	41%	NR (>5.8 months)

- CD47 is expressed on some cancer cells
- CD47 signaling through SIRPα prohibits macrophage phagocytosis of cancer cells – "don't eat me"
- Blocking interaction of CD47 and SIRPα promotes adaptive immune responses and boosts tumor cell phagocytosis

Outline

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies



Antibody-drug conjugates

- 1. Antibody binds to receptor on tumor cell
- 2. ADC is internalized and broken down
- 3. Drug payload performs its MOA (here, microtubule disruption)
- 4. Apoptosis is induced in target cell

FDA-approved antibody-drug conjugates

Drug	Target antigen	Indication			
		Classical Hodgkin lymphoma, relapsed after HSCT or ≥2 previous therapies			
Brentuximab vedotin	CD30	Cutaneous anaplastic large cell lymphoma or CD30+ mycosis fungoides ≥ 1 previous therapies			
		Classical Hodgkin lymphoma - first line with combination chemo			
		Classical Hodgkin lymphoma consolidation after auto-HSCT			
Inotuzumab ozogamicin	CD22	Relapsed/refractory/MRD+ B-cell ALL			
Polatuzumab vedotin (w/ bendamustine & rituximab)	CD79b	DLBCL ≥ 2 previous therapies			
Gemtuzumab ozogamicin	CD33	R/R or newly-diagnosed CD33+ AML in adults or pediatric patients			
Belantamab mafodotin	ВСМА	R/R multiple myeloma after > 4 prior therapies			

Efficacy of approved ADCs – brentuximab vedotin

Study	Treatment(s)	Patient population	Overall response rate	Complete response rate	Landmark OS
NCT00848926	Brentuximab vedotin	Relapsed/refractory Hodgkin lymphoma after failed auto-SCT	75%	33%	5-year: 41%
NCT00866047	Brentuximab vedotin	Relapsed/refractory systemic anaplastic large cell lymphoma	86%	66%	5-year: 60%
ECHELON-1	Brentuximab vedotin + doxorubicin, vinblastine, and dacarbazine	Previously untreated stage III or IV Hodgkin lymphoma	2-year modified PFS rate: 82.1%		
	Doxorubicin, bleomycin, vinblastine, and dacarbazine		2-year modified PFS rate: 77.2%		
AETHERA	Brentuximab vedotin	Unfavorable-risk relapsed or primary refractory classic Hodgkin lymphoma	Median PFS:	42.9 months	
	Placebo	after auto-SCT	Median PFS: 24.1 months		

Efficacy of approved ADCs

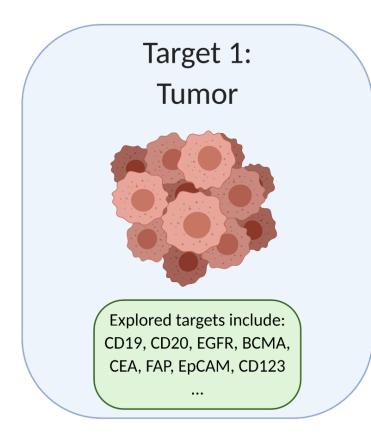
Study	Treatment(s)	Patient population	Key outcomes
INO-VATE	Inotuzumab ozogamicin Standard-of-care chemo	Relapsed/refractory B cell precursor ALL	CR/CRi rate: 73.8% vs 30.9% Median OS: 7.7 vs 6.2 months 2-year OS: 22.8% vs 10%
GO29365	Polatuzumab vedotin + bendamustine & rituximab Bendamustine & rituximab	Relapsed/refractory DLBCL	CRR: 40.0% vs 17.5% Median PFS: 9.5 vs 3.7 months Median OS: 12.4 vs 4.7 months
ALFA-0701	Gemtuzumab ozogamicin + daunorubicin + cytarabine Daunorubicin + cytarabine	De novo acute myeloid leukemia	CR/CRp rate: 81.5% vs 73.6% Median OS: 27.5 vs 21.8 months Median EFS: 17.3 vs 9.5 months
DREAMM-2	Belantamab mafodotin	R/R multiple myeloma after IMiD, PI, and anti-CD38	ORR: 31% Median PFS: 2.9 months

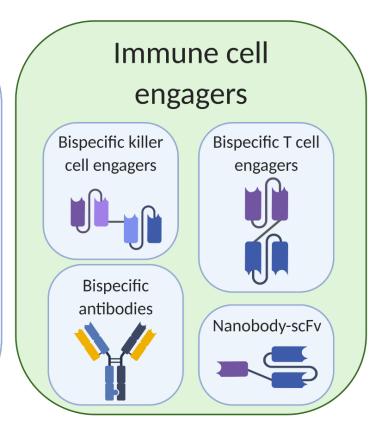
In development: Novel ADCs in clinical trials

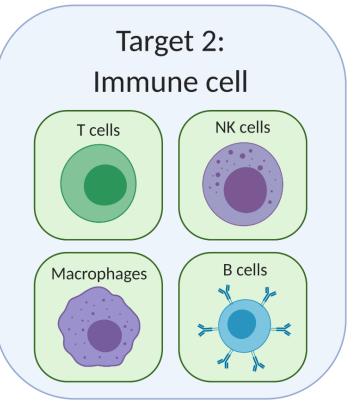
Trial	Indication	Treatment(s)	ADC target antigen	Phase
NCT03544281	R/R multiple myeloma	GSK2857916 + lenaolidomide + dexamethasone	BCMA	2
		GSK2857916 + bortezomib + dexamethasone		
NCT03386513	CD123+ AML, BPDCN or ALL	IMGN632	CD123	1/2
NCT03424603	R/R B cell malignancies	STRO-001	CD74	1
NCT03682796	R/R B cell lymphoma	TRPH-222	CD22	1
NCT04240704	CLL or NHL	JBH492	CCR7	1
NCT03833180	Pre-treated hematologic malignancies	VLS-101	ROR1	1

Outline

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

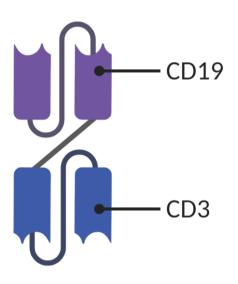






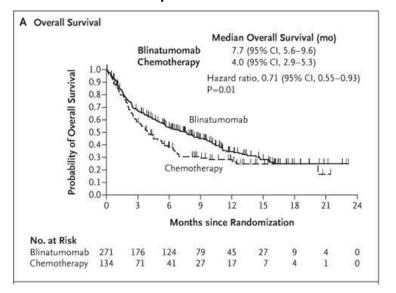
Bispecifics in immunotherapy

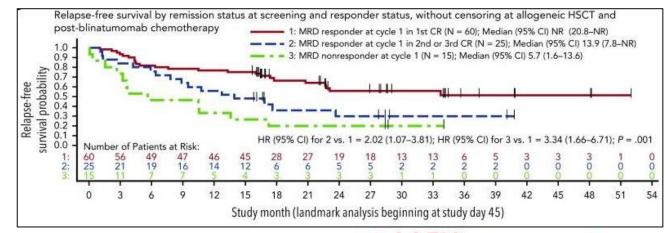
Commonly CD3 on T cells, CD16 for NK and macrophages, etc



Clinical use of immune cell engagers

Drug	Indications
	Relapsed/refractory B-ALL
Blinatumomab	B-ALL in 1^{st} or 2^{nd} complete response with MRD \geq 0.1%




Blinatumomab in R/R B-ALL

R/R B-ALL

Trial	Patient population	Treatment	Key outcomes
NCT02013167	Adults with R/R B-ALL	Blinatumomab	Median OS: 7.7 vs 4.0 months
		Chemotherapy	Median DOR: 7.3 vs 4.6 months
NCT01207388	Adults with MRD+ B-ALL	Blinatumomab	Complete MRD response rate: 78% Median OS: 36.5 months

MRD+ B-ALL

Dosing regimens for blinatumomab

	Cycle		Patients weighing 45 kg or more (Fixed-dose)	Patients weighing less than 45 kg (BSA-based dose)
MRD-	Induction cycle 1	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
positive B		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
ALL	Consolidation cycles 2-4	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
	Cycle		Patients weighing 45 kg or more (Fixed-dose)	Patients weighing less than 45 kg (BSA-based dose)
	Induction cycle 1	Days 1-7	9 mcg/day	5 mcg/m ² /day (not to exceed 9 mcg/day)
		Days 8-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
R/R B-	Induction cycle 2	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
ALL		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
	Consolidation cycles 3-5	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)

14-day treatment-free interval

56-day treatment-free interval

28 mcg/day

Days 29-42

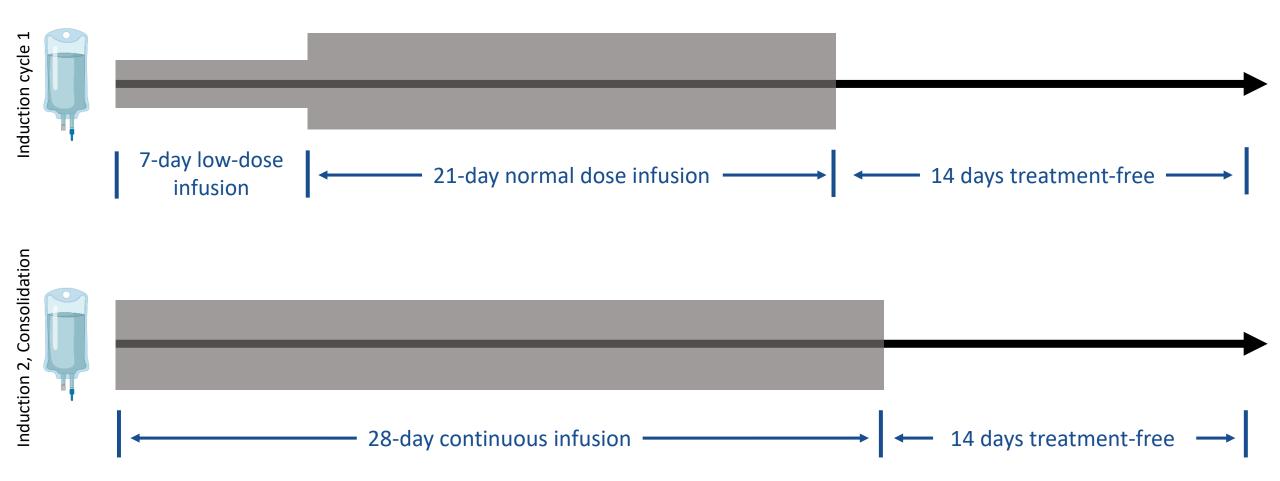
Days 1-28

Days 29-42

15 mcg/m²/day (not to exceed 28 mcg/day)

14-day treatment-free interval

56-day treatment-free interval



6-9

Continued therapy cycles

Dosing regimens for blinatumomab – R/R B-ALL

Common side effects of T cell engagers

Cytokine release syndrome

- Characterized by initial flu-like symptoms, which progress into a shock-like syndrome with elevation in cytokine levels
- Patients display fever, vascular leakage, and organ dysfunction
- Variable onset and course
- Pre-treatment with dexamethasone required
- Management:
 - IL-6 and IL-6R antagonism
 - Corticosteroids
 - Other cytokine receptor antagonists

B cell aplasia

- Due to current clinical agents targeting CD19, which is expressed by both normal and neoplastic B cells
- May result in hypogammaglobulinemia
- Increased risk of infection
- Managed through administration of intravenous immunoglobulin

Stay tuned: more information on toxicity management later in this program

Neurotoxicity

- Also known as "immune effector cell-associated neurotoxicity syndrome" (ICANS)
- Manifests as confusion, delirium, seizures, cerebral edema
- Largely unknown mechanisms
- Incidence increases with more doses, increased age, more prior therapies
- Management:
 - Supportive care for low-grade
 - Corticosteroids for highergrade

In development: Novel immune cell engagers in clinical trials

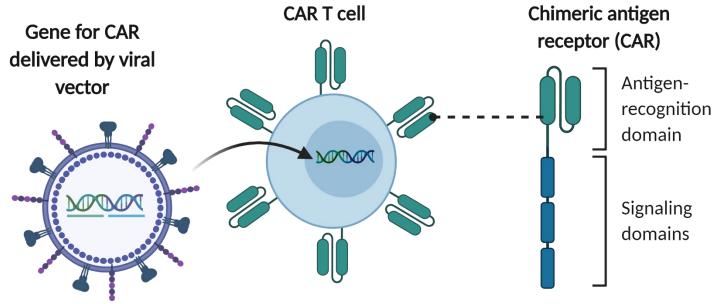
Trial	Indication	Treatment	Target antigens	Phase
NCT03214666	HR myelodysplastic syndromes, R/R AML, systemic mastocytosis	GTB-3550 (TriKE)	CD16, IL-15, CD33	1/2
NCT03516591	High-risk myelodysplastic syndromes	AMV564	CD33, CD3	1
NCT03739606	CD123+ R/R blood cancers	Flotetuzumab	CD123, CD3	2
NCT02730312	CD123+ R/R blood cancers	XmAb14045	CD123, CD3	1
NCT03888105	R/R B cell NHL	Odronextamab	CD20, CD3	2
NCT03309111	Previously treated multiple myeloma	GBR 1342	CD38, CD3	1/2
NCT03761108	R/R multiple myeloma	REGN5458	BCMA, CD3	1/2

Outline

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

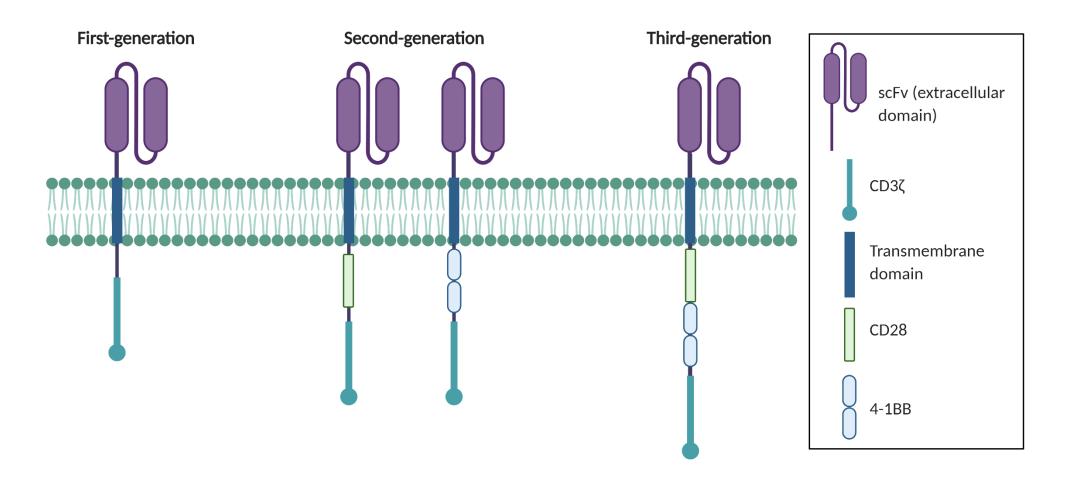
Comparing T cell engagers and CAR T therapy

	CAR T cells	T cell engagers (BiTEs)
Structure	Synthetic gene construct encoding an scFv against tumor antigen linked to activation/costimulatory motifs	Recombinant protein with two specificities: one for tumor antigen and one for T cell antigen (usually CD3)
Effector cell types	Engineered CD8+ and CD4+ T cells	Endogenous CD8+ and CD4+ T cells
Immune synapse	Atypical	Typical
Serial killing	Yes	Yes
Killing mechanisms	Perforin and granzyme B, Fas-Fas-L, or TNF/TNF-R	Perforin and granzyme B
Trafficking	Active	Passive
Clinical applications	Pre-treatment lymphodepletion followed by a single infusion	No lymphodepletion; repeat administration and continuous infusions.
Specificity	Manufactured for each patient	"Off-the-shelf"

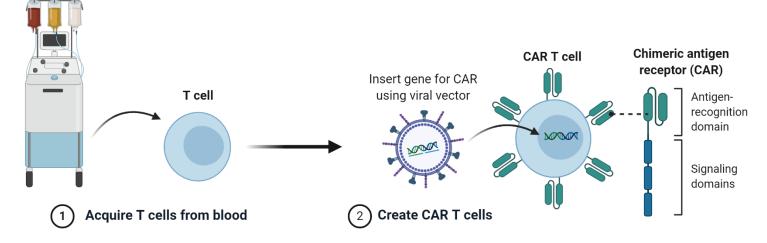


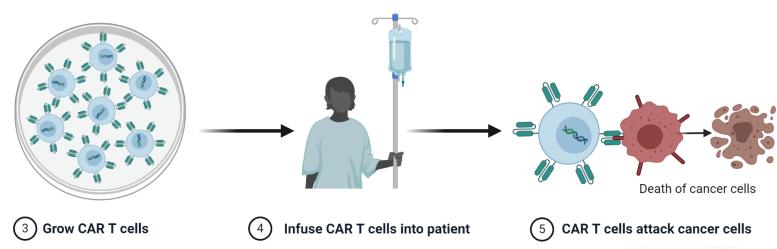
Chimeric antigen receptors

- Overcome immune tolerance
- Targets surface molecules in native conformation
- Independent of antigen presenting cell and MHC complex



Evolution of CAR constructs





CAR T manufacturing and administration

FDA-approved CAR T cell therapies

Drug	Target/co- stimulatory domain	Indication	Dose
Axicabtagene ciloleucel	CD19/CD28	Adults with r/r large B-cell lymphoma, Including diffuse large B-cell lymphoma, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma	2 x 10 ⁶ CAR-positive, viable T cells per kg bodyweight (up to 2x10 ⁸)
Tisagenlecleucel	CD19/4-1BB	Patients ≤25 yr with refractory B-cell acute lymphoblastic leukemia or in 2+ relapse	0.2-0.5x10 ⁶ CAR-positive, viable T cells per kg if under 50 kg 0.1-2.5x10 ⁸ CAR-positive, viable T-cells if over 50 kg
Tisagenlecleucel	CD19/4-1BB	Adults with r/r large B-cell lymphoma after 2+ therapies Including DLBCL, high-grade B-cell lymphoma, DLBCL arising from follicular lymphoma	0.6-6.0 x 10 ⁸ CAR-positive, viable T cells
Brexucabtagene autoleucel	CD19/CD28	Adults with mantle cell lymphoma (MCL) who have not responded to or who have relapsed following other treatments	2 x 10 ⁶ CAR-positive, viable T cells per kg bodyweight (up to 2x10 ⁸)

Comparing clinical trials of CAR T therapies

Trial	Indication	Treatment(s)	ORR	Landmark OS	Grade 3+ toxicity rates
ZUMA-2	R/R mantle cell lymphoma	Brexucabtagene autoleucel (KTE- X19)	86% CRR: 57%	1-year: 86%	CRS: 18% NE: 46%
ZUMA-1	Refractory large B cell lymphoma	Axicabtagene ciloleucel	83% CRR: 58%	2-year: 50%	CRS: 11% NE: 32%
JULIET	R/R diffuse large B cell lymphoma	Tisagenlecleucel	52% CRR: 40%	1-year: 49%	CRS: 22% NE: 12%
ELIANA	R/R B cell acute lymphoblastic leukemia	Tisagenlecleucel	82% CRR: 62%	18-month: 70%	CRS: 48% NE: 13%

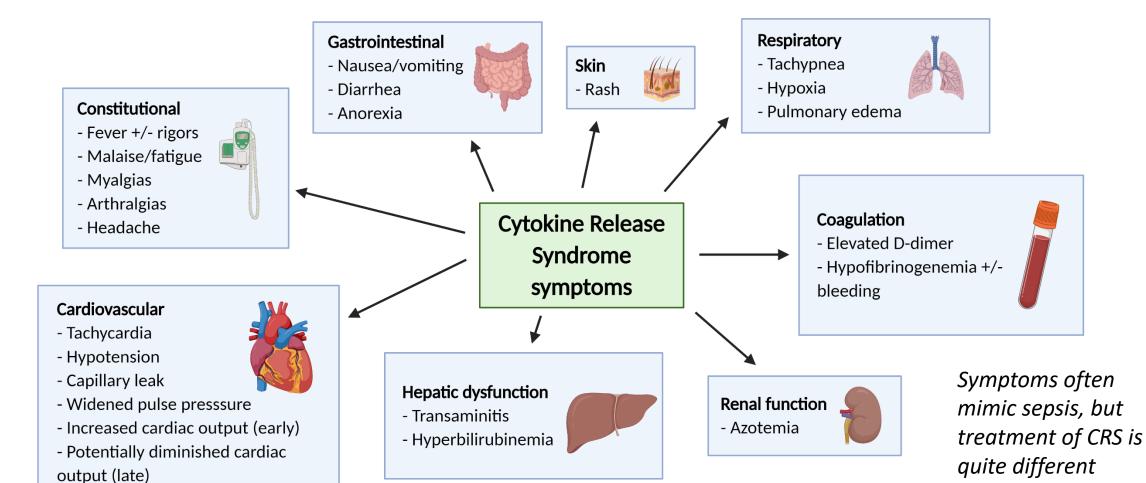
CAR T side effects

- Cytokine Release Syndrome (CRS)
- Neurotoxicity
 - ICANS: Immune effector cell-associated neurotoxicity syndrome
 - NE: Neurologic events
- B cell aplasia

Macrophage Activation Syndrome (MAS)/HLH

Stay tuned:

more
information
on toxicity
management
later in this
program



CAR T side effects - CRS

Eligibility considerations for CAR

Disease

- Relative stability during CAR T manufacturing (~2-6 weeks)
- Bridging therapy (chemo, RT, steroids, lenalidomide, ibrutinib)
- CNS control

Patient

- Adequate cell counts
- DVT, bleeding, infection, neuro disorders
- Functional status: at screen vs. day of CAR T infusion

Other

- Social support, reimbursement
- Availability of tocilizumab for CRS management

In development: Novel CAR T therapies in clinical trials

Trial	Indication	Treatment	Target antigen	Phase
NCT03651128	R/R multiple myeloma	bb2121	BCMA	3
NCT03971799	R/R pediatric AML	CD33CART	CD33	1/2
NCT04186520	R/R B cell malignancies	CAR-20/19 T cells	CD19, CD20	1/2
NCT04109482	R/R BPDCN, AML, HR MDS	MB-102	CD123	1/2
NCT03287817	Diffuse large B cell lymphoma	AUTO3	CD19, CD22	1/2
NCT02690545	R/R HL and NHL	ATLCAR.CD30	CD30	1/2

Conclusions

- Many immunotherapy options for hematological malignancies
- Checkpoint inhibitors for Hodgkin lymphoma and PMBCL high response rate, excellent tolerance, durable responses if CR
- Blinatumomab and inotuzumab for ALL effective salvage, deeper remissions
- Polatuzumab vedotin for DLBCL effective salvage, potential to become frontline
- CAR T therapy ever-increasing indications; patient selection and toxicity management still concerns

Additional Resources

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

(CrossMark

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis^{1†}, Michael R. Bishop^{2†}, Rafat Abonour³, Kenneth C. Anderson⁴, Stephen M. Ansell⁵, David Avigan⁶, Lisa Barbarotta⁷, Austin John Barrett⁸, Koen Van Besien⁹, P. Leif Bergsagel¹⁰, Ivan Borrello¹¹, Joshua Brody¹², Jill Brufsky¹³, Mitchell Cairo¹⁴, Ajai Chari¹², Adam Cohen¹⁵, Jorge Cortes¹⁶, Stephen J. Forman¹⁷, Jonathan W. Friedberg¹⁸, Ephraim J. Fuchs¹⁹, Steven D. Gore²⁰, Sundar Jagannath¹², Brad S. Kahl²¹, Justin Kline²², James N. Kochenderfer²³, Larry W. Kwak²⁴, Ronald Levy²⁵, Marcos de Lima²⁶, Mark R. Litzow²⁷, Anuj Mahindra²⁸, Jeffrey Miller²⁹, Nikhil C. Munshi³⁰, Robert Z. Orlowski³¹, John M. Pagel³², David L. Porter³³, Stephen J. Russell⁵, Karl Schwartz³⁴, Margaret A. Shipp³⁵, David Siegel³⁶, Richard M. Stone⁴, Martin S. Tallman³⁷, John M. Timmerman³⁸, Frits Van Rhee³⁹, Edmund K. Waller⁴⁰, Ann Welsh⁴¹, Michael Werner⁴², Peter H. Wiernik⁴³ and Madhay V. Dhodapkar^{44*}

Position article and guidelines

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma

Nina Shah, ¹ Jack Aiello, ² David E Avigan, ³ Jesus G Berdeja, ⁴ Ivan M Borrello, ⁵ Ajai Chari, ⁶ Adam D Cohen, ⁷ Karthik Ganapathi, ⁸ Lissa Gray, ⁹ Damian Green, ¹⁰ Amrita Krishnan, ¹¹ Yi Lin, ^{12,13} Elisabet Manasanch, ¹⁴ Nikhil C Munshi, ¹⁵ Ajay K Nooka, ¹⁶ Aaron P Rapoport, ¹⁷ Eric L Smith, ¹⁸ Ravi Vij, ¹⁹ Madhav Dhodapkar²⁰

Acknowledgements

Some figures created using Biorender.com

Case Studies

75 y.o. male presents with pancytopenia. Bone marrow biopsy reveals AML with complex cytogenetics with mutated *TP53*, no actionable mutations. He is treated with venetoclax/decitabine and achieves a CR with recovery of blood counts. Six months later, his blood counts begin to fall and bone marrow biopsy confirms relapse with 15% blasts.

PMH: GERD, hyperlipidemia

PSH: Lives with wife, retired mechanic. He previously smoked 1 ppd x 40 years, quit 15 years ago. Drinks 1 glass scotch per week.

Exam: ECOG 1.

Labs: WBC 2.0, ANC 1.2. Hct 29% Plt 50,000. CMP with creatinine 1.2 (eGFR 60), LFTs normal.

- A. Change to oral azacitidine
- B. Gemtuzumab-ozogamicin
- C. Hospice
- D. Low Dose Cytarabine (LoDAC)

- A. Change to oral azacitidine
- B. Gemtuzumab-ozogamicin ORR rate ~ 30% in R/R AML
- C. Hospice
- D. low dose cytarabine (LDAC)

- A. Change to oral azacitidine only approved for maintenance after achievement of CR/CRi following induction
- B. Gemtuzumab-ozogamicin
- C. Hospice
- D. low dose cytarabine (LDAC)

- A. Change to oral azacitidine only approved for maintenance after achievement of CR/CRi following induction
- B. Gemtuzumab-ozogamicin
- C. Hospice –should always be discussed, but patient prefers treatment
- D. low dose cytarabine (LDAC)

- A. Change to oral azacitidine only approved for maintenance after achievement of CR/CRi following induction
- B. Gemtuzumab-ozogamicin
- C. Hospice –should always be discussed, but patient prefers treatment
- D. low dose cytarabine (LDAC) a reasonable option, but less toxic, would defer until after gemtuzumab

HPI: Mrs. M is a 58 y.o. female has a history of Stage III, GCB-type DLBCL, double expressor phenotype. She was initially treated with R-CHOP and attained a CR. Six months later, she relapsed with lymphadenopathy above and below the diaphragm. She was started on salvage RICE therapy and underwent autologous stem cell transplant. Twelve months after her auto transplant, she is found to have new, FDG-avid lymphadenopathy in her abdomen. What is the next best option for treatment?

PMH: HTN, DM complicated by mild neuropathy in her fingertips, obesity

Meds: metoprolol, glipizide

Social: Lives with husband and adult daughter, works as a bank teller. Does not smoke.

Drinks 1-2 glasses of wine per week.

Performance Status: ECOG 0, Karnofsky 90%. Exam unremarkable.

- A. Polatuzumab, Bendamustine, Rituximab (Pola-BR)
- B. Rituximab-Gemcitabine-Oxaliplatin (R-GemOx)
- C. Referral for Chimeric Antigen Receptor T-Cell therapy
- D. Pembrolizumab

- A. Polatuzumab, Bendamustine, Rituximab (Pola-BR) CR rate 40%, PFS ~ 10 months
- B. Rituximab-Gemcitabine-Oxaliplatin (R-GemOx)
- C. Referral for Chimeric Antigen Receptor T-Cell therapy
- D. Pembrolizumab

- A. Polatuzumab, Bendamustine, Rituximab (Pola-BR)
- B. Rituximab-Gemcitabine-Oxaliplatin (R-GemOx) overall response to salvage after 2 or more lines is low, 20-30% (SCHOLAR-1)
- C. Referral for Chimeric Antigen Receptor T-Cell therapy
- D. Pembrolizumab

- A. Polatuzumab, Bendamustine, Rituximab (Pola-BR)
- B. Rituximab-Gemcitabine-Oxaliplatin (R-GemOx) overall response to salvage after 2 or more lines is low, 20-30% (SCHOLAR-1)
- C. Referral for Chimeric Antigen Receptor T-Cell therapy
- D. Pembrolizumab response to single agent checkpoint inhibitors has been disappointing in DLBCL, would reserve for combination on clinical trial

She undergoes biopsy of a portocaval lymph node that confirms DLBCL, CD19+. Mrs. M then proceeds with CART therapy. She achieves a complete remission on her Day 30 scan.

What are the options if she relapses?

Clinical Trial

Pola-BR

R-Gem/Ox

R-GDP

?Allo SCT if achieves CR

