

SITIC 2016 National Harbor, MD November 9-13, 2016

PD-1 blockade in cancer treatment: immunotherapy meets precision medicine

Suzanne L. Topalian

November 12, 2016

Society for Immunotherapy of Cancer

Presenter Disclosure Information

Suzanne L. Topalian

The following relationships exist related to this presentation:

Consultant for: Five Prime Therapeutics; and (spouse) Amgen, MedImmune, Merck, Pfizer, Potenza, Sanofi

Grant/Research support from: Bristol-Myers Squibb; and (spouse) Aduro

Stock/stock options: Five Prime Therapeutics; and (spouse) Aduro, Jounce Therapeutics, Potenza Therapeutics, Tizona

Royalties through institution (spouse): BMS, Potenza

#SITC2016

The war between the immune system and cancer

Melanoma as a case study: endogenous antitumor immunity exists but falls short

- Rare spontaneous regression of primary tumors
- Increased tumor incidence in immunosuppressed patients
- TILs and PBLs have antimelanoma activity in vitro but are unable to halt tumor growth in the host

CD8⁺ T cells

Keir et al, Annu Rev Immunol 2008; Pardoll, Nat Rev Cancer 2012

Keir et al, Annu Rev Immunol 2008; Pardoll, Nat Rev Cancer 2012

Drugs blocking the PD-1/PD-L1 pathway are active against multiple cancer types

Objective tumor regressions in patients with:

- Melanoma (17-50% of patients responding)
- Lung cancer (10-30%)
- Kidney cancer (12-29%)
- Bladder cancer (15-30%)
- Head and neck cancer (20-25%)
- Hodgkin lymphoma (65-87%)
- Ovarian cancer (6-23%)
- Gastric cancer, TNBC, HCC, mesothelioma, ...

..... a "common denominator" for cancer therapy

Duration of Response: Keynote-006

Adapted from Schachter et al., ASCO 2016

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.

Unconventional response patterns: "immune-related" response of metastatic NSCLC to anti-PD-1

Topalian et al., NEJM 2012

Long-term survival: patients with melanoma receiving immune checkpoint blocking drugs

Hodi et al, AACR 2016, abstr. CT001

Immune-related toxicities consistent with MOA: nephritis (T and B cell infiltrates) in a patient with metastatic melanoma responding to anti-PD-1

Current challenges in I-O drug development

- Deeper mechanistic knowledge of underlying biology
- Synergistic combination regimens to enhance efficacy (next session....)
- Biomarkers to identify patients or tumor types most likely to respond to therapy

Can a "precision medicine" approach enhance the impact and applicability of anti-PD-1?

Areas of unmet need:

- In generally unresponsive tumor types, identify patient subsets likely to benefit (e.g., colorectal, pancreatic, prostate Ca)
- Within responsive tumor types, identify patients unlikely to benefit
- Decisions for treatment sequencing: first-line vs. later line therapy
- Although anti-PD1/ PD-L1 drugs are broadly applicable, these considerations may be tumor type-specific

Mechanism-driven biomarkers for immune checkpoint blockade

• What are the recognized antigens?

Topalian et al., 2016

- Does the tumor contain reactive T cells?
- o Does the tumor express PD-1 ligands?

Areas of opportunity for mechanism-based biomarker development for anti-PD-1 therapies

Immunologic
Genetic
Viral

Can immunological factors provide cross-cutting biomarkers for anti-PD-1 activity?

Preliminary correlation of PD-L1 expression in pre-treatment tumor biopsies, with response to anti-PD-1 therapy

Pre-treatment tumor PD-L1 expression correlates with efficacy of anti-PD-1 (pembrolizumab) in NSCLC: individualizing treatment strategy

≥ 50% tumor cells PD-L1+
- Response rate 45%
- Median OS not reached

< 50% tumor cells PD-L1+ - Response rate 11-17% - Median OS 8.8 months

Pre-treatment tumor PD-L1 expression correlates with efficacy of anti-PD-1 (pembrolizumab) in NSCLC: individualizing treatment strategy

➢ Oct. 2016: FDA approves pembro as <u>1st line</u> therapy for patients with tumors ≥50% PD-L1+, <u>2nd line</u> for tumors ≥1% PD-L1+

Re-examining underserved populations: tumor immune microenvironment in anal SCCs from HIV(+) vs. (-) patients

Kaunitz et al., Soc Invest Derm 2016, abstr. #241

Can cancer genetics guide immunotherapy?

Response of melanoma to anti-PD-1 does *not* depend on BRAF mutational status

Does mutational load correlate with responsiveness to immune checkpoint blockade?

Lawrence et al., Nature 2013

Altered proteins contain neoepitopes for immune recognition

Colorectal cancers are generally unresponsive to PD-1 blockade, but the MSI-high subset has a high mutational burden

Lawrence et al., Nature 2013

Microsatellite instability (MSI): genetic hypermutability resulting from deficient mismatch repair (dMMR), present in ~15% colon cancers and in some other tumor types

MSI-high genotype identifies patients likely to respond to anti-PD-1 therapy

(Le, Diaz, et al., NEJM 2015)

Transcriptomics: a new dimension for I-O biomarker development

- Kidney cancers resistant to anti-PD-1 therapy express a metabolic gene signature
- Up-regulation of immunologic pathways is associated with response

Whole genome expression profiling

M. Ascierto et al., Cancer Immunol Res 2016

Virus-associated cancers

Observations:

 Viral antigens are foreign to the immune system and are strong immune stimulants
 PD-1 and PD-L1 are expressed in virus+ tumors

Question:

Do oncogenic viruses provide biomarkers for response to anti-PD-1 therapies?

Quality vs. quantity of tumor antigens: Merkel cell Ca

Virus(+) vs. (-) Merkel cell Ca: at the extremes of mutational frequency compared to TCGA data from other cancers

Goh et al., Oncotarget 2015

ORIGINALARTICLE DD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma Paul T. Nghiem, M.D., Ph.D., Shailender Bhatia, M.D., Evan J. Lipson, M.D., Ragini R. Kudchadkar, M.D., Natalie J. Miller, B.A., Lakebmanan Annomalai D.V. Viral Status (N=24) Viral Status (N=24) Negative 120-125-100 Positive

The NEW ENGLAND JOURNAL of MEDICINE

MCC antigens:

- > Virus(+) tumors have a very low mutational burden but express shared viral oncoproteins that are strong immune stimulants (ORR = 62%)
- Virus(-) tumors have a very high carcinogen (UV light)-induced mutational burden (ORR = 44%)

FDA approvals for checkpoint blockers and PD-L1 IHC tests

Neoadjuvant checkpoint blockade as a primer for systemic antitumor T cell responses

Pardoll 2016

Neoadjuvant checkpoint blockade as a primer for systemic antitumor T cell responses

Appearance of tumor-resident T cell clones (TCRseq) in peripheral blood following anti-PD-1 therapy (colon Ca)

NEOADJUVANT ANTI-PD-1 (NIVOLUMAB) IN NSCLC

STUDY DESIGN & ENDPOINTS

Forde et al., ESMO 2016

PATTERNS OF RADIOGRAPHIC RESPONSE TO NEOADJUVANT ANTI-PD-1 IN EARLY STAGE NSCLC Forde et al., ESMO 2016

Squamous, Adeno, Adeno, isolated tumor pathologic CR <10% viable tumor cells, dense T cells **Pre-Rx** ~4 wks

These tumors were PD-L1+ with IHC 28-8 assay, defined as ≥1% positive tumor cells

EXPLORATORY ANALYSES OF RESPONSE TO NEOADJUVANT ANTI-PD-1 (NIVOLUMAB) IN NSCLC

(%)		17 16	Major pathologic response								
`		15 14	_		Mir	nor or	no r	respo	onse		
	ġ	13 12 11									<10% residual viable
(22)	ent n	10 9									tumor cells defines
	ati	7									major pathologic
(72)	<u>с</u>	6 5 4									response (Pataer et al.,
(6)		3 2									310 2012)
(0)		1	1	1 1	1	1	1	-			_
		0	10	20 30) 40	50	60	70	80	90 1	100
% pathologic response											

Pathologic response (n=17)

Radiographic response (n=18) RECIST 1.1	N (%)
Partial Response	4 (22)
Stable Disease	13 (72)
Progressive Disease	1 (6)

> 7/17 (41%) patients had <10% residual viable tumor at resection

> 1 patient had a pathologic complete response

Forde et al., ESMO 2016

Forde et al., ESMO 2016

Complex biomarkers may be more highly predictive of response to anti-PD-1/PD-L1

> Multifactorial markers may be needed to guide combination therapy

1971: The National Cancer Act launches the "War on Cancer"

2016: Winning key battles on our way to winning the war

Nixon Signs \$1.6 Billion Cancer **Bill, Names Man to Head Fight**

WASHINGTON (UPI)-President the act was "a milestone in the long Nixon today signed into law a \$1.6 billion program to find a sure for

and difficult effort # and cures of can "This law is

The New York Times

Breaking Through Cancer's Shield October 15, 2013

Thanks to collaborating clinical trial centers. Supported by BMS, NCI, SU2C-AACR-CRI, Melanoma Research Alliance, L. Hahn Trust, Moving for Melanoma, Barney Foundation, and others