From Adoptive Cell Therapy to CAR Therapy

SITC, November 5, 12015

Michel Sadelain, MD, PhD Director, Center for Cell Engineering Immunology Program, Sloan-Kettering Institute Departments of Medicine and Pediatrics Memorial Sloan Kettering Cancer Center New York, NY

CENTER FOR CELL ENGINEERING

Cell Engineering is part of the future to finding effective therapies to cure cancer and allied diseases

Disclosures

• Consultant and co-founder, Juno Therapeutics

Adoptive cell therapy (ACT)

- Passive immunotherapy refers to approaches in which immunologic reagents, such as serum, cells, or cell products (e.g. antibodies, cytokines) that are thought to have antitumor activity are administered to a tumor-bearing host.
- Active immunotherapy refers to interventions in which the host is stimulated to produce an immune response that directly or indirectly causes tumor-cell death.

From ACT to CAR Therapy

The quest for specificity and potency

- Adoptive transfer of immunity (mice)
- LAK therapy (lymphokine-activated killer cells)
 - TIL therapy (tumor-infiltrating lymphocytes)
 - Emergence of T cell engineering
 - CAR therapy

Physiological and synthetic receptors for T cell engineering

Sadelain, Riviere & Brentjens, *Nat Rev Cancer*, 2003 Sadelain, *AACR Education Program*, 2014

Goals of T cell Engineering

Core hypothesis: T cells can be genetically targeted to any antigen and enhanced to overcome immune escape mechanisms to achieve tumor eradication

Table 1 Dationale for T cell engineering in oncology

Goal	Rationale		
To overcome central immune tolerance	CAR T cells can be genetically targeted to any antigen, overcoming clonal deletion and repertoire gaps		
To circumvent HLA downregulation	CARs enable HLA-independent antigen recognition, thereby overcoming irreversible defects in HLA expression or antigen presentation		
To target both CD4 ⁺ and CD8 ⁺ T cells to the tumor	CD4 ⁺ T cell help can be provided in the absence of HLA class II expression, using a CAR (HLA-independent) or a high-affinity HLA class I–restricted TCR (HLA class I–dependent)		
To broaden T cell reactivity to carbohydrates and glycolipids	CAR recognition is not limited to proteins and HLA-peptide complexes		
To target cancer stem cells	CAR T cells can be directed to tumor-initiating cells when such cells have been defined and target antigens identified therein		
To augment T cell potency	CARs enable increased antitumor activity by over-riding T cell inhibitory mechanisms, reprogramming the tumor microenvironment, or recruiting/boosting endogenous T cell responses		
To control T cell longevity	CARs can modulate T cell longevity through the use of different costimulatory signals, different T cell subsets, and/or suicide genes		
To exploit alternative (nonautologous) T cell sources	T cell engineering may facilitate the utilization of T cells harvested from healthy donors or induced in culture from stem/progenitor cells	Cadalaia	I Clin Invi

Sadelain, J Clin Invest, 2015

Selecting CD19 as a target for CAR therapy

19z1 CART cells expanded on CD19+CD80+IL15+ AAPCs eradicate established systemic Raji in SCID-beige mice

Brentjens et al, Nat Med, 2003

A Phase I trial of precursor B cell Acute Lymphoblastic Leukemia (B-ALL) treated with autologous T cells genetically targeted to the B cell specific antigen CD19 (PI: J. Park; Past PI : M. Davila; co-PIs: R. Brentjens, M. Sadelain, I. Rivière)

• Enrollment Criteria:

Patients with relapsed B-ALL initially treated with re-induction chemotherapy followed by consolidation with cyclophosphamide and 1928z+T cells

• Protocol Design:

Escalating T cell dose (3 x10⁶ 19-28z+T cells/kg, 10⁷ 19-28z+T cells/kg, 3x10⁷ 19-28z+ T cells/kg) in combination with cyclophosphamide (3.0g/m²)

Primary Endpoint:

To assess the toxicity of adoptively transferred 1928z+ T cells

• Secondary Endpoints:

1928z+T cell survival Role of CY T cell survival 1928z+T cell homing **B** cell aplasias

Jae Park

Marco Davila

Renier Brentiens

Rapid tumor elimination mediated by 19-28z T cells

- BM aspirates pre- and post-treatment with Α. 19-28z T cells in 2 patients with morphologic chemotherapy-refractory B-ALL. Cyclophosphamide was given at Day -1 and CD19 CAR-targeted T cells were infused on Days 1 and 2. Left panels. BM prior to CAR modified T cell therapy demonstrated predominant blast cells with an absence of normal BM precursors. For MSK-ALL04 the left panel includes an inset with 100x magnification. Middle panels are BM aspirates done shortly after 19-28z T cell infusion and is hypocellular with normal stromal elements, histiocytes, and no evidence of blasts. Right panels. By 1 to 2 months after CAR modified T cell therapy there is BM recovery with normal hematopoiesis and no evidence of abnormal blasts.
- B. Flow cytometry for CD19 and CD10 expression in BM pre- and post-treatment. Cells were gated on CD45+7AAD- cells.

Brentjens, Davila, Riviere et al, Science Transl Med, 2013

Deep Sequencing for IgH rearrangements before and after CD19 CAR-targeted T cell therapy

Patient ID	Day of Treatment	Total # IgH rearrangements	Total # malignant IgH rearrangements
MSK- ALL01*	-1: 55:	57,480 15,925	58 0
MSK- ALL03*	-5: 30:	1,084 0	0 0
MSK- ALL04	-4: 11: 24: 59:	2,430,058 2,407 1,144 995,563	2,426,898 1,316 637 0
MSK- ALL05*	-1: 8: 29:	3,307,494 1,880 8,270	3,300,732 0 0
MSK- ALL06	-34: 18: 39:	255,301 5,429 1,866,851	174,698 4 0

Adaptive Biotechnologies performed multiplex PCR and Deep Sequencing on genomic DNA prepared from BM aspirated on the noted day. Malignant IgH rearrangement refers to IgH rearrangements associated with the B-ALL tumor cells. Total # of IgH rearrangements are derived from both malignant and non-malignant B cells. * Patient has gone to allo-SCT and is off-study.

20 December 2013 | S10

Breakthrough of the Year Cancer Immunotherapy

T cells on the attack

BREAKTHROUGH OF THE YEAR 2013 | NEWSFOCUS

mcer

their

emia

osed.

rials.

et an

t the

five

are

Pharmaceutical companies shied away from cancer immunotherapy, wary of past flops but also of a strategy very unlike the standard zapping of a tumor. So the job of getting anti-CTLA-4 into people fell to a small biotechnology company, Medarex, in Princeton, New Jersey. In 1999, it to drug. Crucial results

from so-called chimeric antigen receptor therapy, or CAR therapy-a personalized treatment that involves genetically modifying a patient's T cells to make them target tumor cells. One group, led by Carl June at the University of Pennsylvania, began reporting eye-catching responses to acquired rights to the antibody, taking the leap from biology CAR therapy: patients with pounds of leukemia that melted away. At a meeting in New Orleans this month, June's

Memorial Sloan-Kettering Cancer Center in New York Bristol-Myers Sc more than \$2 billireported that the T cell therapy in their studies put 45 of 75 melanoma lived a adults and children with leukemia into complete remission, compared with 6 although some later relapsed. CAR therapy is now the focus of any treatment hac numerous clinical trials. Researchers hope that it, like the a randomized trial at least 2 years. antibodies, can target an assortment of cancers. Engineered T The numbers f cells are still experimental.

and the side effect in Japan discovered a molecule expressed in dying T cells, developing antibodies such as anti-PD-1. In 2011, the U.S. which he called programmed death 1, or PD-1, and which he recognized as another brake on T cells. He wasn't thinking of cancer, but others did. One, oncologist Drew Pardoll at Baltimore coffee shop. He urged the company to test an anti-PD-1 antibody in people.

The first trial, with 39 patients and five different cancers, began in 2006. By 2008, doctors were jolted by what they saw: In five of the volunteers, all of them with refractory disease, tumors were shrinking. Survival in a few stretched beyond what was imagined possible.

Still, understanding what these therapies were doing inside the body was a challenge. Other cancer treatments either work or they don't, and the answer is nearly instantaneous. With both anti-CTLA-4 and anti-PD-1, physicians saw some tumors grow before vanishing months later. Some patients kept responding even after the antibody had been discontinued, suggesting their immune system had been fundamentally changed. Some, particularly those on anti-CTLA-4, developed unnerving side effects, inflammation of the colon, for example, or of the pituitary gland, All of these were the fine points of a new template, one whose vagaries physicians were just beginning to understand. The learning curve would be steep.

It was steep in another area of immunotherapy as well. For years, Steven Rosenberg at the National Cancer Institute had harvested T cells that had migrated into tumors, expanded them in the lab, and reinfused them into patients, saving some with dire prognoses. The technique worked only when doctors could access tumor tissue, though, limiting its application.

Then in 2010, Rosenberg published encouraging results

Cancer Immunotherapy

This year marks a turning point in cancer, as long-sought efforts to unleash the immune system against tumors are paying off-even if the future remains a question mark

History's path is unchartable when it's not yet past a grounded-in-reality bunch, say a corner has been turned but present, when we are still standing in the middle of it. That's what made Science's selection of this year's Breakthrough of the Year such a topic of internal debate, even anxiety. In celebrating cancer immunotherapy-harnessing the immune system to battle tumors-did we risk hyping an approach whose ultimate impact remains unknown? Were we irresponsible to label as a breakthrough a strategy that has touched a tiny fraction of cancer patients and helped only some of them? What do we mean when we call something a breakthrough, anyway? Ultimately, we concluded, cancer immunotherapy passes the test. It does so because this year, clinical trials have cemented its potential in patients and swayed even the skeptics. The field hums with stories of lives extended: the woman with a grapefruit-size tumor in her lung from melanoma, alive and healthy 13 years later; the 6-yearold near death from leukemia, now in third grade and in remission: the man with metastatic kidney cancer whose disease continued fading away even after treatment stopped. As the anecdotes coalesce into data, there's another layer, too, a sense of paradigms shifting. Immunotherapy marks an entirely different way of treating cancer-by targeting the immune system, not the tumor itself. Oncologists,

and we won't be going back.

With much pressure these days to transform biological insights into lifesaving drugs, there's a lesson to be learned from immunotherapy's successes: They emerged from a careful decoding of basic biology that spanned many years. The early steps were taken by cancer immunologist James Allison, now at the University of Texas MD Anderson Cancer Center in Houston. In the late 1980s. French researchers who weren't thinking about cancer at all identified a new protein receptor on the surface of T cells, called cytotoxic T-lymphocyte antigen 4, or CTLA-4. Allison found that CTLA-4 puts the brakes

Unline

sciencemag.org

Podcasts, videos, and other

extras (http://scim.ag/

on T cells, preventing them from launching full-out immune attacks. He wondered whether blocking the blocker-the CTLA-4 moleculewould set the immune system free to destroy cancer.

Allison's rationale was untested. med 6165). He and his colleagues changed

the conversation, in the words of one cancer researcher, "to consider immunosuppression as the focal point, and manipulation of immunosuppression as the target."

Doing so took time. CTLA-4 was discovered in 1987. In 1996, Allison published a paper in Science showing that antibodies against CTLA-4 erased tumors in mice.

Seek and destroy. Instead of targeting tumors directly, cancer immunotherapy enlists the immune system to attack them. Here, an antibody (pink) blocks a receptor (purple) found on T cells (gray) setting off a chain reaction that leads to an assault on cancer cells (brown).

Food and Drug Administration approved Bristol-Myers Squibb's anti-CTLA-4 treatment, called ipilimumab, for metastatic melanoma. The cost is high: The company Johns Hopkins University, met with a leader of Medarex at a charges \$120,000 for a course of therapy. In 2012, Suzanne Topalian of Hopkins, Mario Sznol of Yale University, and their colleagues reported results for anti-PD-1 therapy in nearly 300 people, and they provided an update earlier this year. Tumors shrunk by about half or more in 31% of those with melanoma, 29% with kidney cancer, and 17% with lung cancer.

This year brought even more encouragement. Bristol-Myers Squibb reported this fall that of 1800 melanoma patients treated with ipilimumab, 22% were alive 3 years later. In June, researchers reported that combining ipilimumab and anti-PD-1 led to "deep and rapid tumor regression" in almost a third of melanoma patients. Drugs blocking the PD-1 pathway have not yet been proven to extend life, although survival rates so far have doctors optimistic that they do

For physicians accustomed to losing every patient with advanced disease, the numbers bring a hope they couldn't have fathomed a few years ago. For those with metastatic cancer, the odds remain long. Today's immunotherapies don't help everyone, and researchers are largely clueless as to why more don't benefit. They are racing to identify biomarkers that might offer answers and experimenting with ways to make therapies more potent. It's likely that some cancers will not yield to immunotherapy for many years, if ever. Even in the fluid state oncology now finds itself, this much is certain: One book has closed, and a new one has

opened. How it will end is anyone's guess. -IENNIFER COUZIN-FRANKEL

Patient numbers/outcomes with CD19 CAR therapy for ALL

Publication/meeting date	Number/age of subjects	Complete remission rate
Brentjens, <i>Sci Transl Med</i> , March 21, 2013	5 adults	100%
Grupp <i>, New Engl J Med,</i> April 18, 2013	2 children	100 %
Davila, <i>Sci Transl Med</i> , February 19, 2014	16 adults	88%
Lee, <i>Lancet,</i> AOL, October 13, 2014	20 children	70%
Maude, N Engl J Med,	25 children,	90%
October 16, 2014	5 adults	100%
Park, <i>ASH 2014,</i> December 6, 2014	27 adults	89%
Frey, <i>ASH 2014,</i> December 6, 2014	12 adults	89%

CD28/CTLA4/CD80 and 4-1BB/4-1BBL in T cell activation

Assays for T cell potency: the CAR stress test

The NALM/6 B-ALL NSG model

T cell accumulation and tumor burden in bone marrow 19z1 vs 19-28z vs 19-BBz

Altering the tumor microenvironment by *trans*-costimulation

DAY 0

PZ1 click +19Z click +PZ1

PZ1 click +19Z click +PZ1-4-1BBL-CD80

PZ1 click +19Z click +19Z-4-1BBL-CD80

PZ1 click +19Z click +PZ1

PZ1 click +19Z click +PZ1-4-1BBL-CD80

PZ1 click +19Z click +19Z-4-1BBL-CD80

PZ1 click +19Z click +PZ1

PZ1 click +19Z click +PZ1-4-1BBL-CD80

PZ1 click +19Z click +19Z-4-1BBL-CD80

Altering the tumor microenvironment by *trans*-costimulation... and more

Microarray studies reveal strong induction of IRF7/IFNß in 19-28z/4-1BBL T cells

IRF7 knock-down impairs the therapeutic efficacy of CD19 CAR T cells

Maud Condomines, Zeguo Zhao

Summary

- 2nd-gen CARs retarget and functionally enhance T cells
- CAR T <u>cells</u> induce CRs where chemotherapy <u>drugs</u> have failed ("the <u>CD19 paradigm</u>")
- CAR T cells can be engineered to graded <u>potency</u> levels
- CAR T cells are not just "tumor killers" and can be harnessed to reprogram the TME (trans-costimulation, IFN-ß)

Isabelle Rivière lab R&D/Manufacturing

Xiuyang Wang, Ph.D Jolanta Stefanski Oriana Borquez-Ojeda Teresa Wasielewska Jinrong Qu, Maher Youssif Mitsu Fink, Qing He Anniesha Hack, Fang Du *QA/QC Unit* Yongzeng Wang, PhD Mark Satter James Hosey Willard Joseph Maria Scaringi

Adult BMT Service

Sergio Giralt, MD Craig Sauter, MD

Acknowledgements Sadelain lab

Sjoukje van der Stegen, PhD Zeguo Zhao, PhD Maud Condomines, PhD Fabiana Perna, MD, PhD Mohamad Hamieh, PhD Sun Jie, PhD Laure Ysebrant, MD, PhD Justin Eyguem, PhD Marco Davila, MD, PhD Maria Themeli, MD, PhD Christopher Kloss, MD, PhD Victor Fedorov, MD, PhD Reuben Benjamin, MD, PhD Marcela Maus, MD, PhD Matthias Stephan MD, PhD Xiao-Song Zhong, MD Jason Plotkin

Prasad Adusumilli lab

Leo Cherkassy, MD Aurore Morello, PhD Elliott Servais, MD Memorial Sloan Kettering

Cancer Center

Renier Brentjens lab

Jae Park, MD Kevin Curran, MD Holly Pegram, PhD Raymond Yee, PhD

James Lee, MD Yan Nikhamin

Grant support

NCI: PO1 CA059350, R01 CA138738; Mr. and Mrs. Goodwin Commonwealth Foundation for Research, MSKCC ETC, ACGT, Major Family, NYSCF, Stand Up To Cancer/AACR

Special thanks to:

Dimiter Dimitrov (NCI) Yang Feng (Dimitrov lab) **Kevin Slawin** (Bellicum)

Building controls into engineered T cells. (a) The small molecule AP1903 can dimerize the suicide switch iCasp9 to induce T cell apoptosis. (b) Bifunctional small molecule bridging the binding between antigen and CAR or antibody mediating the interaction between antigen and synthetic Fc receptor can be remote controls of CAR T cells. (c) iCAR can inhibit CAR function in the presence of an antigen present in normal cells but not tumor cells. (d) CCR binding to a second antigen in tumor cells is required for full T cell activation. (e) The small molecule AP21976 can dimerize two independent signaling entities through an FKBP-FRB module to control T cell activation. (a, b, e) Strategies employing one remote control (antibody or small molecule) in addition to one autonomous control (antigen A). (c, d) Strategies with two autonomous controls (antigen A and antigen B). Negative regulation involves inducing apoptosis (a) or turning off T cell activation (c) by input 2 while positive regulation (b, d, e) results in T cell activation by input 2.

Mesothelin CAR trial at MSKCC - NCT02414269

*confers sensitivity to AP1903 (Bellicum); human scFv

Mesothelin expression in solid tumors

Morello, Sadelain and Adusumilli, Can Discov, in press