From Adoptive Cell Therapy
to CAR Therapy

SITC, November 5, 12015

Michel Sadelain, MD, PhD
Director, Center for Cell Engineering
Immunology Program, Sloan-Kettering Institute
Departments of Medicine and Pediatrics
Memorial Sloan Kettering Cancer Center
New York, NY

CENTER FOR CELL ENGINEERING

Cell Engineering is part of the future to finding effective

thevapies to cure cancer and allied diseases

‘, Memorial Sloan-Kettering
i Cancer Center




Disclosures

e Consultant and co-founder, Juno Therapeutics



Adoptive cell therapy (ACT)

e Passive immunotherapy refers to approaches in which
immunologic reagents, such as serum, cells, or cell products
(e.g. antibodies, cytokines) that are thought to have
antitumor activity are administered to a tumor-bearing host.

e Active immunotherapy refers to interventions in which the
host is stimulated to produce an immune response that
directly or indirectly causes tumor-cell death.



From ACT to CAR Therapy

The quest for specificity and potency

e Adoptive transfer of immunity (mice)

\

e LAK therapy (lymphokine-activated killer cells)

\

e TIL therapy (tumor-infiltrating lymphocytes)

\

e Emergence of T cell engineering

\

e CAR therapy



Physiological and synthetic receptors for T cell engineering

The TCR/CD3 complex and costimulatory constellation CARs
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Goals of T cell Engineering

Core hypothesis: T cells can be genetically targeted to any antigen and
enhanced to overcome immune escape mechanisms to achieve tumor eradication

Table 1. Rationale for T cell engineering in oncology

Goal

To overcome central immune tolerance

To circumvent HLA downregulation

To target both (D4* and (D8° T cells
to the tumor

To broaden T cell reactivity to
carbohydrates and glycolipids

To target cancer stem cells

To augment T cell potency

To control T cell longevity

To exploit alternative
(nonautologous) T cell sources

Rationale

CART cells can be genetically targeted to any
antigen, overcoming clonal deletion
and repertoire gaps
[(ARs enable HLA-independent antigen
recognition, thereby overcoming irreversible
defects in HLA expression or antigen presentation
CD4* T cell help can be provided in the absence of
HLA class Il expression, using a CAR
(HLA-independent) or a high-affinity HLA class
I-restricted TCR (HLA class I-dependent)
CAR recognition is not limited to proteins and
HLA-peptide complexes
CART cells can be directed to tumor-initiating
cells when such cells have been defined
and tareet antigens identified therein
(ARs enable increased antitumor activity
by over-riding T cell inhibitory mechanisms,
reprogramming the tumor microenvironment, or
recruiting/boosting endogenous T cell responses
CARs can modulate T cell longevity through the
use of different costimulatory signals, different
T cell subsets, and/or suicide genes
T cell engineering may facilitate the utilization of T
cells harvested from healthy donors or induced in
culture from stem/progenitor cells

Sadelain, J Clin Invest, 2015



Selecting CD19 as a target for CAR therapy
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19z1 CART cells expanded on CD19+CD80+I1L15+ AAPCs
eradicate established systemic Raji in SCID-beige mice
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CAR T cell Manufacturing Flow
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A Phase | trial of precursor B cell Acute Lymphoblastic Leukemia (B-ALL) treated
with autologous T cells genetically targeted to the B cell specific antigen CD19
(PI: J. Park; Past Pl : M. Davila; co-Pls: R. Brentjens, M. Sadelain, I. Riviéere)

e Enrollment Criteria:
Patients with relapsed B-ALL initially treated with re-induction chemotherapy
followed by consolidation with cyclophosphamide and 1928z+ T cells

e Protocol Design:
Escalating T cell dose (3 x108 19-28z+T cells/kg,107 19-28z+T cells/kg, 3x10’

19-28z+ T cells/kg) in combination with cyclophosphamide (3.0g/m?)

Primary Endpoint:
To assess the toxicity of adoptively transferred 1928z+ T cells
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Jae Park Marco Davila Renler Brentjens

Secondary Endpoints:
1928z+ T cell survival
Role of CY T cell survival
1928z+ T cell homing

B cell aplasias

FA



Rapid tumor elimination mediated by 19-28z T cells

MSK-
JALLOS

MSK-
JALLOS

Post-Treatment

Post-Treatment

CcD10

BM aspirates pre- and post-treatment with
19-28z T cells in 2 patients with
morphologic chemotherapy-refractory B-
ALL. Cyclophosphamide was given at Day -
1 and CD19 CAR-targeted T cells were
infused on Days 1 and 2. Left panels. BM
prior to CAR modified T cell therapy
demonstrated predominant blast cells with
an absence of normal BM precursors. For
MSK-ALLO4 the left panel includes an inset
with 100x magnification. Middle panels
are BM aspirates done shortly after 19-28z
T cell infusion and is hypocellular with
normal stromal elements, histiocytes, and
no evidence of blasts. Right panels. By 1 to
2 months after CAR modified T cell therapy
there is BM recovery with normal
hematopoiesis and no evidence of
abnormal blasts.

B. Flow cytometry for CD19 and CD10
expression in BM pre- and post-treatment.
Cells were gated on CD45+7AAD- cells.

Brentjens, Davila, Riviere et al, Science Transl Med, 2013



Deep Sequencing for IgH rearrangements before
and after CD19 CAR-targeted T cell therapy

Patient Day of Total # Total #
ID Treatment IgH malignant
rearrangements IgH
rearrangements
MSK- -1: 57,480 58
ALLO1* 55: 15,925 0
MSK- -5: 1,084 0
ALLO3* 30: 0 0
MSK- -4: 2,430,058 2,426,898
ALLO4 11: 2,407 1,316
24: 1,144 637
59: 995,563 0
MSK- -1: 3,307,494 3,300,732
ALLO5* 8: 1,880 0
29: 8,270 0
MSK- -34: 255,301 174,698
ALLO6 18: 5,429 4
39: 1,866,851 0

Adaptive Biotechnologies performed multiplex PCR and Deep Sequencing on genomic
DNA prepared from BM aspirated on the noted day. Malignant IgH rearrangement refers
to IgH rearrangements associated with the B-ALL tumor cells. Total # of IgH
rearrangements are derived from both malignant and non-malignant B cells. * Patient
has gone to allo-SCT and is off-study.
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~ Cancer Immunotherapy

This year marks a turning point in cancer, as long-sought efforts to unleash the immune
system against tumors are paying off—even if the future remains a question mark

History’s path is unchartable when it’s not yet past

but present, when we are still standing in the mid-

dle of it. That's what made Science’s selection of this
year’s Breakthrough of the Year such a topic of inter-

nal debate, even anxiety. In celebrating cancer immu-
notherapy—harnessing the immune system to battle
tumors—did we risk hyping an approach whose ultimate
impact remains unknown? Were we irresponsible to label
as a breakthrough a strategy that has touched a tiny fraction
of cancer patients and helped only some of them? What do
we mean when we call something a breakthrough, anyway?
Ultimately, we concluded, cancer immunotherapy
passes the test. It does so because this year, clinical trials
have cemented its potential in patients and swayed even
the skeptics. The field hums with stories of lives extended:
the woman with a grapefruit-size tumor in her lung from
melanoma, alive and healthy 13 years later; the 6-year-
/ old near death from leukemia, now in third grade and in
remission; the man with metastatic kidney cancer whose
disease continued fading away even after treatment stopped.

' As the anecdotes coalesce into data, there’s
another layer, too, a sense of paradigms shifting.
Immunotherapy marks an entirely different

way of treating cancer—by targeting
the immune system, not the
tumor itself. Oncologists,

a grounded-in-reality bunch, say a corner has been turned
and we won’t be going back.

With much pressure these days to transform biological
insights into lifesaving drugs, there’s a lesson to be learned
from immunotherapy’s successes: They emerged from a
careful decoding of basic biology that spanned many
years. The early steps were taken by cancer immunologist
James Allison, now at the University of Texas MD
Anderson Cancer Center in Houston. In the late 1980s,
French researchers who weren’t thinking about cancer
at all identified a new protein receptor on the surface of
T cells, called cytotoxic T-lymphocyte antigen 4, or
CTLA-4. Allison found that CTLA-4 puts the brakes
on T cells, preventing them from
launching full-out immune attacks. Onl Ine
He wondered whether blocking the g
blocker—the CTLA-4 molecule—  Sciencemag.org
would set the immune system free to :%‘1215‘;}) o
desm,)./ car{cer. ¢ extras (hltp:l}sdm.ag/

Allison’s rationale was untested.  meq 4145).

He and his colleagues changed -

the conversation, in the words of one cancer researcher,
“to consider immunosuppression as the focal point, and
manipulation of immunosuppression as the target.”

Doing so took time. CTLA-4 was discovered in 1987.
In 1996, Allison published a paper in Science showing
that antibodies against CTLA-4 erased tumors in mice.

Seek and destroy. Instead of targeting tumors directly, cancer
immunotherapy enlists the immune system to attack them. Here,
an antibody (pink) blocks a receptor (purple) found on T cells

(gray), setting off a chain reaction that leads to an assault on
cancer cells (brown),

CREDIT: V. ALTOUNIAN/SCIENCE

Pharmaceutical companies shied away from cancer
immunotherapy, wary of past flops but also of a strategy very
unlike the standard zapping of a tumor. So the job of getting
anti-CTLA-4 into people fell to a small biotechnology
company, Medarex, in Princeton, New Jersey. In 1999, it
acquired rights to the antibody, taking the leap from biology

from so-called chimeric antigen receptor therapy, or
CAR therapy—a personalized treatment that involves
geneticallymodifyinga patient’s T cells to make them target
tumor cells. One group, led by Carl June at the University
of Pennsylvania, began reporting eye-catching responses to
CAR therapy: patients with pounds of leukemia that melted

to drug. away. At a meeting in New Orleans this month, June’s
Crucial results . ) . ncer
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in Japan discovered a molecule expressed in dying T cells,
which he called programmed death 1, or PD-1, and which he
recognized as another brake on T cells. He wasn’t thinking
of cancer, but others did. One, oncologist Drew Pardoll at
Johns Hopkins University, met with a leader of Medarex at a
Baltimore coffee shop. He urged the company to test an anti—
PD-1 antibody in people.

The first trial, with 39 patients and five different cancers,
began in 2006. By 2008, doctors were jolted by what they
saw: In five of the volunteers, all of them with refractory
disease, tumors were shrinking. Survival in a few stretched
beyond what was imagined possible.

Still, understanding what these therapies were doinginside
the body was a challenge. Other cancer treatments either
work or they don’t, and the answer is nearly instantaneous.
With both anti-CTLA-4 and anti-PD-1, physicians saw
some tumors grow before vanishing months later. Some
patients kept responding even after the antibody had been
discontinued, suggesting their immune system had been
fundamentally changed. Some, particularly those on anti—
CTLA-4, developed unnerving side effects, inflammation of
the colon, for example, or of the pituitary gland. All of these
were the fine points of a new template, one whose vagaries
physicians were just beginning to understand. The learning
curve would be steep.

Ttwas steep in another area of immunotherapy as well. For
years, Steven Rosenberg at the National Cancer Institute had
harvested T cells that had migrated into tumors, expanded
them in the lab, and reinfused them into patients, saving
some with dire prognoses. The technique worked only
when doctors could access tumor tissue, though, limiting its
application.

Then in 2010, Rosenberg published encouraging results

developing antibodies such as anti—PD-1. In 2011, the U.S.
Food and Drug Administration approved Bristol-Myers
Squibb’s anti-CTLA-4 treatment, called ipilimumab,
for metastatic melanoma. The cost is high: The company
charges $120,000 for a course of therapy. In 2012, / /
Suzanne Topalian of Hopkins, Mario Sznol of Yale [
University, and their colleagues reported results for anti—
PD-1 therapy in nearly 300 people, and they provided an
update earlier this year. Tumors shrunk by about half or more
in 31% of those with melanoma, 29% with kidney cancer,
and 17% with lung cancer. v

This year brought even more encouragement. Bristol-
Myers Squibb reported this fall that of 1800 melanoma
patients treated with ipilimumab, 22% were alive 3 years PN
later. In June, researchers reported that combining &
ipilimumab and anti-PD-1 led to “deep and rapid tumor
regression” in almost a third of melanoma patients. Drugs sl
blocking the PD-1 pathway have not yet been proven to
extend life, although survival rates so far have doctors
optimistic that they do.

For physicians accustomed to losing every patient with
advanced disease, the numbers bring a hope they couldn’t”
have fathomed a few years ago. For those with metastatic
cancer, the odds remain long. Today’s immunotherapies don’t
help everyone, and researchers are largely clueless as to why
more don’t benefit. They are racing to identify biomarkers
that might offer answers and experimenting with ways to
make therapies more potent. It’s likely that some cancers
willnot yield to immunotherapy for many years, if ever.

Even in the fluid state oncology now finds itself, this
much is certain: One book has closed, and a new one has
opened. How it will end is anyone’s guess! |

-JENNIFER COUZIN-FRANKEL
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Patient numbers/outcomes with CD19 CAR therapy for ALL

Publication/meeting date

Brentjens, Sci Transl Med,
March 21, 2013

Grupp, New Engl J Med,
April 18, 2013

Davila, Sci Transl Med,
February 19, 2014

Lee, Lancet,
AOL, October 13, 2014

Maude, N Engl J Med,
October 16, 2014

Park, ASH 2014,
December 6, 2014

Frey, ASH 2014,
December 6, 2014

Number/age of subjects

5 adults

2 children

16 adults

20 children

25 children,

5 adults
27 adults

12 adults

Complete remission rate

100%

100 %

88%

70%

90%

100%

89%

89%



CD28/CTLA4/CD80 and 4-1BB/4-1BBL in T cell activation

T cell-encoded CD80 and 4-1BBL induce auto- and
transcostimulation, resulting in potent tumor rejection.
Stephan et al., Nat Med, 13(12):1440-9, 2007.
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Assays for T cell potency: the CAR stress test
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T cell accumulation and tumor burden in bone marrow
19z1 vs 19-28z vs 19-BBz
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Altering the tumor microenvironment by trans-costimulation

The “28z + 4-1BBL” CAR model

Tumor targeting \ 4-1BBL/4-1BB trans-costimulation

7

T cell-encoded CD80 and 4-1BBL induce
auto- and trans-costimulation, resulting
In potent tumor rejection.

Stephan, Nat Med, 2007.

CD28 costimulation / \

/ 4-1BB/4-1BBL auto-costimulation
T cell activation
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Altering the tumor microenvironment
by trans-costimulation... and more

The “28z + 4-1BBL” CAR model

Tumor targeting \ 4-1BBL/4-1BB trans-costimulation
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Microarray studies reveal strong induction of IRF7/IFNB in 19-282/4-1BBL T cells

a 19-282*4-1BBL* b 19-28z+  19z1* 19z1*  19-28z*
(1235) LNGFR* LNGFR* 4-1BBL* 4-1BBL*

493
158 224
360
259 : 508
159
19-28z*LNGFR* 19z1*4-1BBL*
(936) (1251)
[-1.9 0 J
Enrichment plot: Enrichment plot:
REACTOME_INTERFERON_ALPHA_BETA_SIGNALING REACTOME_INTERFERON_ALPHA_BETA_SIGNALING
o~ 06
g osil
@ 04l
5
2 03
E o.z{
S o1
S ool
00t 01
2 100 |7 (positively correlated) & 100 |7 (positively correlated)
£ o075 19282z-4-1BBL g ors
2 os0 2 os0
T e 2ar0 crosd e 15153 5 e 2o croch 15719
£ o000 £ o000
g g -025 1
e - e PR W Maud Condomines,
X ) 5,000 10000 15000 20000 25000 30,000 = ) 5,000 10000 15000 20000 25000 30000
2 Rank in Ordered Dataset 2 Rank in Ordered Dataset Fa bia na Pe rna

Enrichment profile — Hits Ranking metric scores Enrichment profile — Hits Ranking metric scores




IRF7 knock-down impairs the therapeutic efficacy of CD19 CAR T cells
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Summary

2"d-gen CARs retarget and functionally enhance T cells

CART cells induce CRs where chemotherapy drugs have failed
(“the CD19 paradigm”)

CART cells can be engineered to graded potency levels

CART cells are not just “tumor killers” and can be harnessed to
reprogram the TME (trans-costimulation, IFN-R)
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Building controls into engineered T cells. (a) The small molecule AP1903 can dimerize the suicide switch iCasp9 to induce
T cell apoptosis. (b) Bifunctional small molecule bridging the binding between antigen and CAR or antibody mediating the
interaction between antigen and synthetic Fc receptor can be remote controls of CAR T cells. (c) iCAR can inhibit CAR
function in the presence of an antigen present in normal cells but not tumor cells. (d) CCR binding to a second antigen in
tumor cells is required for full T cell activation. (e) The small molecule AP21976 can dimerize two independent signaling
entities through an FKBP-FRB module to control T cell activation. (a, b, e) Strategies employing one remote control
(antibody or small molecule) in addition to one autonomous control (antigen A). (c, d) Strategies with two autonomous
controls (antigen A and antigen B). Negative regulation involves inducing apoptosis (a) or turning off T cell activation (c)
by input 2 while positive regulation (b, d, e) results in T cell activation by input 2. Jie and Sadelain, Cell Res, 2015
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