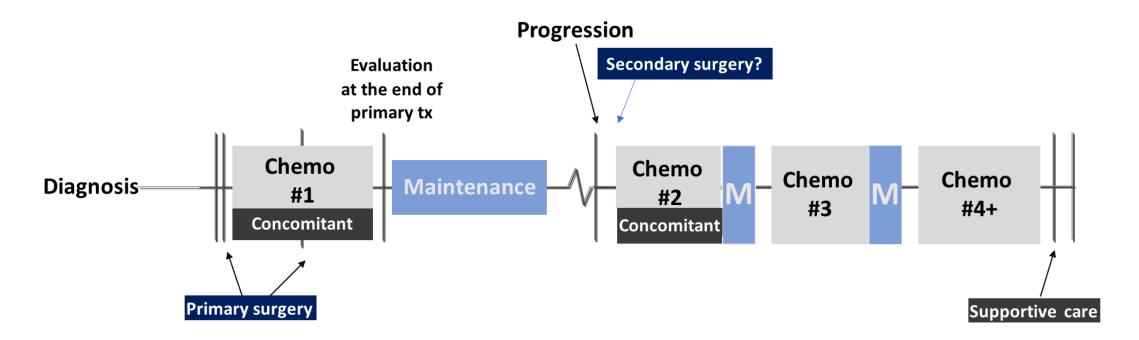


Ovarian Cancer and Biomarkers

Emese Zsiros MD, PhD, FACOG

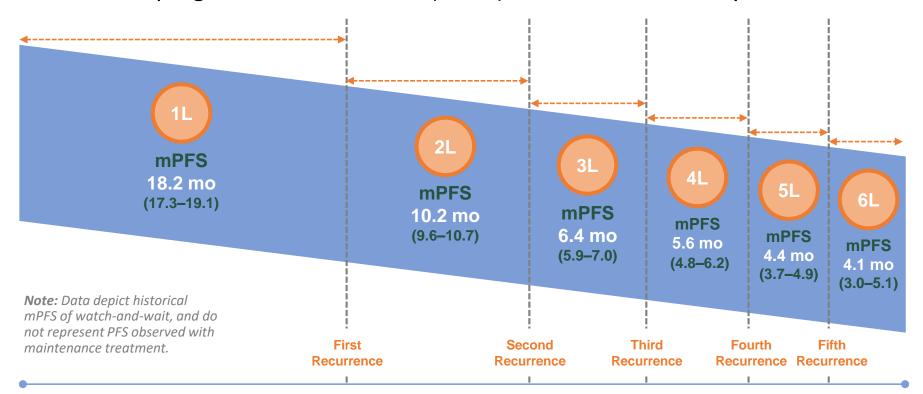
Chair of Gynecologic Oncology
Shashi Lele MD Endowed Chair
Associate Professor of Oncology
Department of Gynecologic Oncology
Department of Immunology
Roswell Park Comprehensive Cancer Center


Disclosures

- No relevant financial relationships to disclose
- I will be discussing non-FDA approved indications during my presentation.

OC treatment clinical landscape

- Over recent decades, the 5-year OS of women with ovarian cancer has improved but largely due to more treatment lines rather than better first line therapy
- Platinum and paclitaxel are the main drugs that have been in standard use for >20 years
- Treatment of platinum-resistant ovarian cancer continues to be clinically challenging, has a poor outcome and the median PFS benefits are modest



Advances in Cancer Immunotherapy™ The Sad Reality: Poor Prognosis and Shorter Treatment Intervals

- Most ovarian cancers will recur, leading to poor prognosis and shorter treatment intervals
 - ~80% of advanced ovarian cancers will recur during or after 1L treatment
 - Median progression-free survival (mPFS) decreases after every recurrence*:

Response Rate to 2nd line cytotoxic chemotherapy: 15-25%.

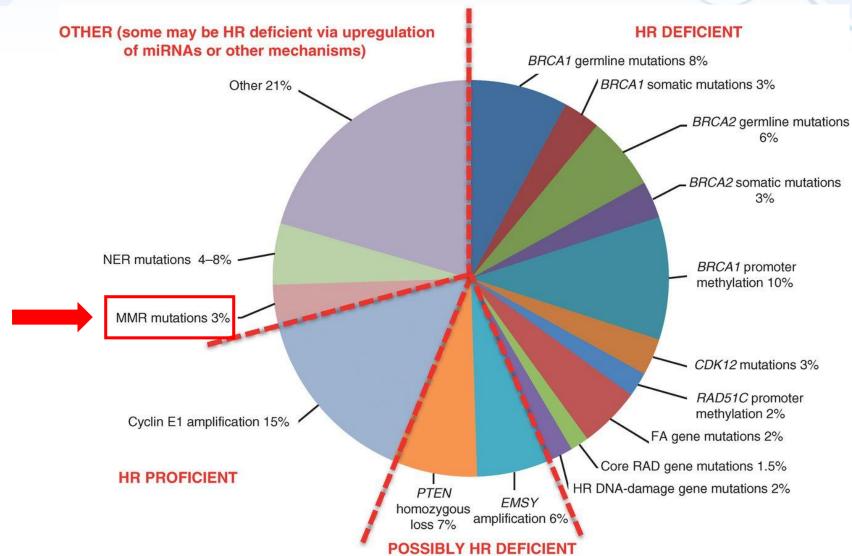
^{*}mPFS values measured from beginning of chemotherapy (ie, day of randomization) to the first disease progression and, thereafter, from one progression to the subsequent one or to death L, line; mo, month; mPFS, median progression-free survival; PFS, progression-free survival.

Society for Immunotherapy I's immunotherapy ever going to be the future to treat OC?

NCCN Guidelines Version 1.2021 Ovarian Cancer/Fallopian Tube Cancer/ Primary Peritoneal Cancer

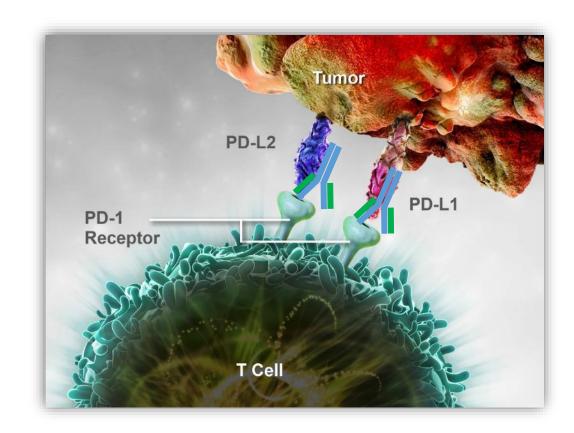
NCCN Guidelines Index
Table of Contents
Discussion

PRINCIPLES OF SYSTEMIC THERAPY


Acceptable Recurrence Therapies for Epithelial Ovarian (including LCOC)^I/Fallopian Tube/Primary Peritoneal Cancer^m

Recurrence Therapy for Platinum-Resistant Disease (alphabetical order)								
Preferred Regimens	Other Recommended	Regimens	Useful in Certain Circumstances					
Cytotoxic Therapy	Cytotoxic Therapy ^t		<u>Immunotherapy</u>					
Cyclophosphamide (oral)/bevacizumab ^{9,30} Docetaxel ³¹ Etoposide, oral ³² Gemcitabine ^{33,34} Liposomal doxorubicin ^{33,34} Liposomal doxorubicin/bevacizumab ^{9,0,35} Paclitaxel (weekly) ³⁶ Paclitaxel (weekly)/bevacizumab ^{9,0,35} Topotecan ^{37,38}	Capecitabine Cyclophosphamide Doxorubicin Ifosfamide Irinotecan Melphalan	Oxaliplatin Paclitaxel Paclitaxel, albumin bound Pemetrexed Sorafenib/topotecan ³⁹ Vinorelbine	Pembrolizumab (for patients with MSI-H or dMMR solid tumors, or TMB-H tumors ≥10 mutations/megabase and no satisfactory alternative treatment options) ^{v,29} Hormone Therapy Fulvestrant (for low-grade serous carcinoma) Targeted Therapy (single agents)					
Topotecan/bevacizumab ^{g,o,35} Targeted Therapy (single agents) Bevacizumab ^{g,o,17,18} Niraparib ^{g,19} Olaparib ^{r,20} Rucaparib ^{s,21}	Targeted Therapy (sing Pazopanib (category 2 Hormone Therapy Aromatase inhibitors (a Leuprolide acetate Megestrol acetate Tamoxifen		Entrectinib or larotrectinib (for <i>NTRK</i> gene fusion-positive tumors) ^v Trametinib (for low-grade serous carcinoma) ²⁸					

Mutational landscape of OC



TMB and MSI in OC

	N	n with TMB ≥ 7.6 muts/Mb	% n with TMB≥ 7.6 muts/Mb	n with MSI-H	n with MSI- H and TMB ≥ 7.6 muts/Mb	% MSI-H of TMB ≥ 7.6 muts/Mb
Clear cell	254	23	9.06%	4	3	13.04%
Endometrioid	140	29	20.71%	13	12	41.38%
Carcinoma Mixed	92	9	9.78%	2	2	22.22%
HG Serous	2655	208	7.83%	0	0	0

Singe Agent ICB

Singe agent anti-PD1/PD-L1 in OC

Checkpoint inhibitor	Inclusion	Phase	patient number	# of prior therapies	ORR	Reference
			Anti-PD1			
Nivolumab	Platinum resistant OC	2	20	≥ 4 (55%)	10% CR 5% PR 30% SD	Hamanishi et al 2015
Pembrolizumab (Keynote-28)	Recurrent OC	1b	26	≥ 3 (65%)	4% CR, 8% PR, 23% SD	Varga et al 2015
Pembrolizumab (Keynote-100)	Reccurent OC Cohort A: TFI of ≥ 3 to 12 months Cohort B: TFI of ≥ 3 months	2	376	A: 1-3 B: 4-6	8% ORR (17.3% ORR CPS>10)	Matulonis et al 2018
			Anti-PD-L1			
Avelumab	Platinum resistant OC	1b	124	≥3 (58%)	9.7% PR, 44% SD	Disis et al 2016
Atezolizumab	Recurrent OC	1b	12	>6 (58%)	25% ORR	Infante et al 2016
BMS-936559	Recurrent OC	1	17	>1	6% PR,18% SD	Brahmer et al 2012

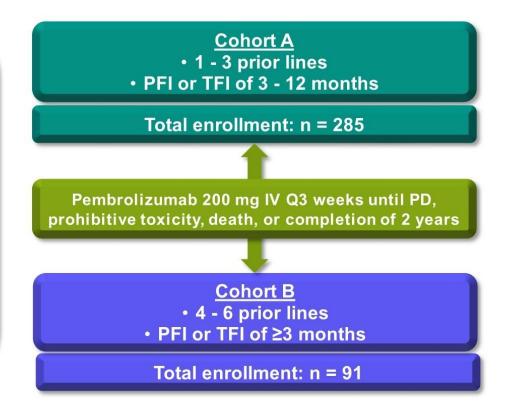
Advances in Cancer ImmunotherapyTM

KEYNOTE-100: Phase 2 Two-Cohort Study of Pembrolizumab for Recurrent OC

Annals of Oncology 30: 1080–1087, 2 doi:10.1093/annonc/mdz135 Published online 2 May 2019

ORIGINAL ARTICLE

Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study


U. A. Matulonis^{1*}, R. Shapira-Frommer², A. D. Santin³, A. S. Lisyanskaya⁴, S. Pignata⁵, I. Vergote⁶, F. Raspagliesi⁷, G. S. Sonke⁸, M. Birrer⁹, D. M. Provencher¹⁰, J. Sehouli¹¹, N. Colombo¹², A. González-Martín¹³, A. Oaknin¹⁴, P. B. Ottevanger¹⁵, V. Rudaitis¹⁶, K. Katchar¹⁷, H. Wu¹⁸, S. Keefe¹⁹, J. Ruman¹⁹ & J. A. Ledermann²⁰

Patients (N = 376)

- Recurrent, advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer
- ECOG PS 0 or 1
- Provision of a tumor sample for biomarker analysis

Key exclusion criteria:

- Mucinous histology
- No bowel obstruction within 3 months
- No active autoimmune disease
- No active CNS metastases and/or carcinomatous meningitis

Primary endpoint:

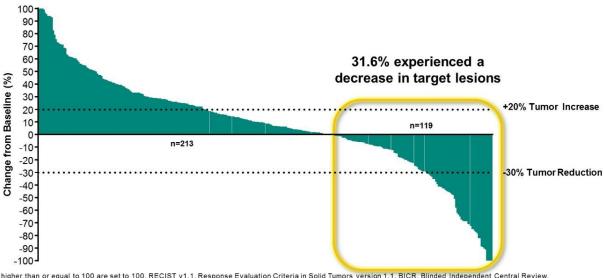
ORR by RECIST v1.1 by BICR

- By cohort
- By PD-L1 expression

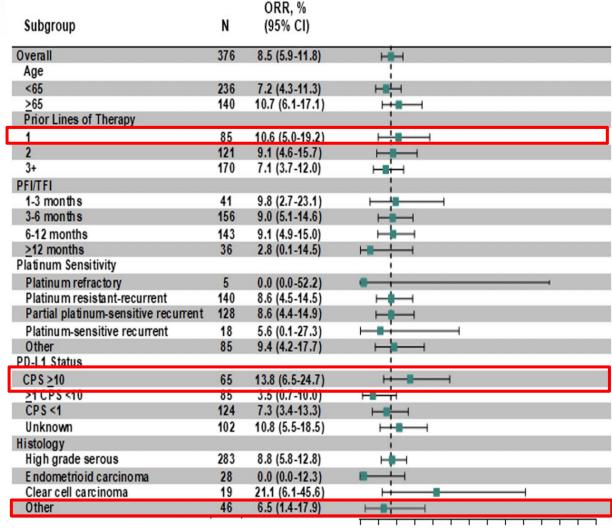
Secondary endpoints:

- DOR, DCR, PFS, OS, safety

PFI = platinum-free interval; TFI = treatment-free interval.



Advances in Cancer ImmunotherapyTM


KEYNOTE-100

140 PRROC patients were treated with pembrolizumab monotherapy in KN100: ORR was 8.5%.

Best Change From Baseline in Tumor Size in Cohorts A + B: Based on RECIST v1.1 per BICR

Values higher than or equal to 100 are set to 100. RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1. BICR, Blinded Independent Central Review All Subjects as Treated Population, Database cut-off date: September 18, 2019,

Antitumor Activity: Confirmed Objective Response Rate Based on RECIST v1.1 per BICR

	Cohort A 1 - 3 prior lines; PFI/TFI 3 - 12 months	Cohort B 4 - 6 prior lines; PFI/TFI ≥3 months	Cohorts A + B All-comers
	n = 285	n = 91	n = 376
ORR % (95% CI)	8.1 (5.2 - 11.9)	9.9 (4.6 - 17.9)	8.5 (5.9 - 11.8)
DCR % (95% CI)	22.1 (17.4 - 27.4)	22.0 (14.0 - 31.9)	22.1 (18.0 - 26.6)
Best overall response			
Complete response n (%)	5 (1.8)	2 (2.2)	7 (1.9)
Partial response n (%)	18 (6.3)	7 (7.7)	25 (6.6)
Stable disease n (%)	84 (29.5)	25 (27.5)	109 (29.0)
Progressive disease n (%)	165 (57.9)	49 (53.8)	214 (56.9)
Responders (n)	23	9	32
Time to response, median months (range)	2.1 (1.9 - 6.3)	2.1 (1.8 - 12.3)	2.1 (1.8 - 12.3)
Duration of response, median months (range)	8.3 (3.9 - 35.4+)	23.6 (3.3+ - 32.8+)	10.2 (3.3+ - 35.4+)

Antitumor Activity by PD-L1 Expression: Confirmed Response Rates Based on RECIST v1.1 per BICR

	Cohort A 1 - 3 prior lines; PFI/TFI 3 - 12 months		4 - 6 pri	ort B or lines; 3 months	Cohorts A + B All-comers	
	CPS ≥1 n = 101	CPS ≥10 n = 43	CPS ≥1 n = 49	CPS ≥10 n = 22	CPS ≥1 n = 150	CPS ≥10 n = 65
ORR % (95% CI)	6.9 (2.8 - 13.8)	11.6 (3.9 - 25.1)	10.2 (3.4 - 22.2)	18.2 (5.2 - 40.3)	8.0 (4.2 - 13.6)	13.8 (6.5 - 24.7)
DCR % (95% CI)	24.8 (16.7 - 34.3)	25.6 (13.5 - 41.2)	22.4 (11.8 - 36.6)	31.8 (13.9 - 54.9)	24.0 (17.4 - 31.6)	27.7 (17.3 - 40.2)
Best overall response			'		•	
Complete response n (%)	2 (2.0)	2 (4.7)	2 (4.1)	2 (9.1)	4 (2.7)	4 (6.2)
Partial response n (%)	5 (5.0)	3 (7.0)	3 (6.1)	2 (9.1)	8 (5.3)	5 (7.7)
Stable disease n (%)	32 (31.7)	12 (27.9)	14 (28.6)	6 (27.3)	46 (30.7)	18 (27.7)
Progressive disease n (%)	55 (54.5)	22 (51.2)	27 (55.1)	12 (54.5)	82 (54.7)	34 (52.3)

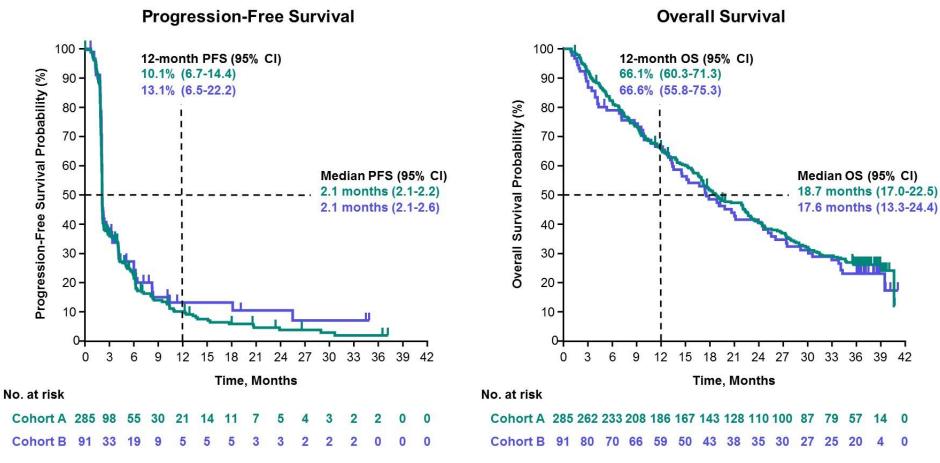
RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1. BICR, Blinded Independent Central Review. DCR = CR + PR + SD ≥24 weeks Database cut-off date: September 18, 2019.

ECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1. BICR, Blinded Independent Central Review. DCR = CR + PR + SD ≥24 weeks. atabase cut-off date: September 18, 2019.

With 37.8m median follow-up, results confirm that pembrolizumab monotherapy in recurrent OC elicits modest antitumor efficacy:

- 8.5% ORR in all-comers (7CRs, 25 PRs).

Trend toward increased ORR with higher PD-L1 expression:

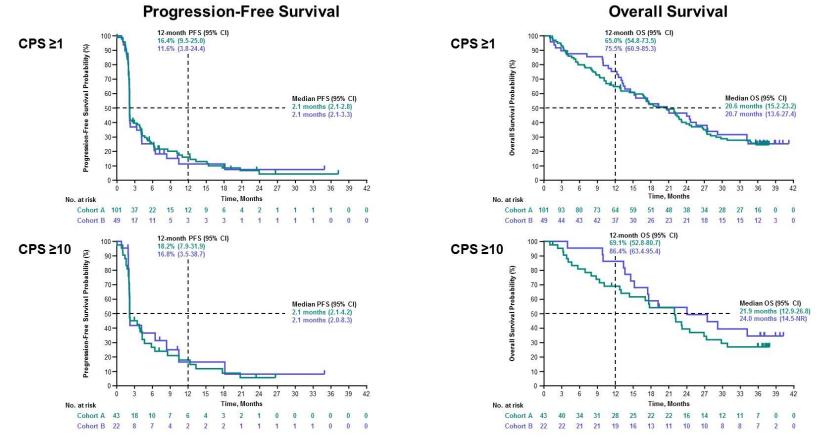

- 11.6% ORR for PD-L:1 CPS>10 in Cohort A

18.2% ORR for PD-L1 CPS>10 in Cohort B

KEYNOTE-

Progression-Free Survival and Overall Survival

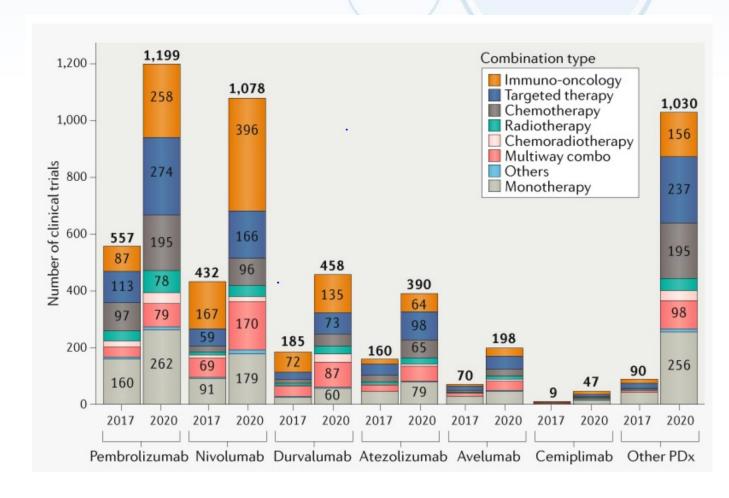
Progression-free survival based on RECIST v1.1 per BICR. RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1. BICR, Blinded Independent Central Review. All Subjects as Treated Population. Database cut-off date: September 18, 2019.



Advances in Cancer ImmunotherapyTM

KEYNOTE-100 - Phase 2 Two-Cohort Study of Pembrolizumab for Recurrent OC

Progression-Free Survival and Overall Survival by PD-L1 Expression


mPFS in CPS>1 or CPS>10 : 2.1m

mOS CPS>1: 20.6m mOS CPS>10: 21.9m

Progression-free survival based on RECIST v1.1 per BICR. RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1. BICR, Blinded Independent Central Review. All Subjects as Treated Population. Database cut-off date: September 18, 2019.

CHEMO + IO COMBINATION

RATIONALE FOR COMBINATION IN OC

Carboplatin/Paclitaxel: Combined PD-1 blockade in NSCLC- immunochemotherapy combination outperformed chemotherapy

Cisplatin: sensitize cells to T cell killing

Doxorubicin + Oxaliplatin: Induce immunogenic cell death, which could, synergize with immunotherapy

Pegylated doxorubicin (PLD): Enhances the uptake of tumor antigens by myeloid DCs by promoting antigen processing and cross presentation to T cells

Low-dose Cyclophosphamide: Attenuate Tregs and improve vaccination and ACT efficacy combination with ICB- stimulates the generation of CD8+ TILs and improves ORR

GYNECOLOGIC ONCOLOGY

journal homepage: www.elsevier.com/locate/ygyno

Pembrolizumab plus PLD in PRROC

- Open label, phase II study
- N=26 (single stage design with safety lead-in of n=6)

Key Eligibility Criteria

- Recurrent EOC, fallopian tube or primary peritoneal cancer
- Received prior platinum-based therapy
- Platinum resistant (refractory excluded)
- Up to 2 prior lines of cytotoxic therapies for recurrent or persistent disease
- ECOG 0 or 1
- Presence of measurable disease per RECIST 1.1
- No prior immunotherapy

Combined pembrolizumab and pegylated liposomal doxorubicin in platinum resistant ovarian cancer: A phase 2 clinical trial

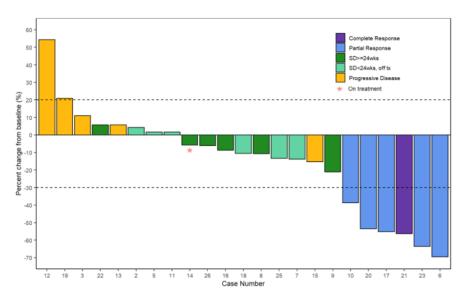
Elizabeth K. Lee ^a, Niya Xiong ^b, Su-Chun Cheng ^b, William T. Barry ^b, Richard T. Penson ^c, Panagiotis A. Konstantinopoulos ^{a,d}, Mark A. Hoffman ^e, Neil Horowitz ^{d,f}, Don S. Dizon ^g, Elizabeth H. Stover ^{a,d}, Alexi A. Wright ^{a,d}, Susana M. Campos ^{a,d}, Carolyn Krasner ^{c,1}, Stephanie Morrissey ^d, Christin Whalen ^d, Roxanne Quinn ^d, Ursula A. Matulonis ^{a,d,*,2}, Joyce F. Liu ^{a,d,*,2}

Intervention

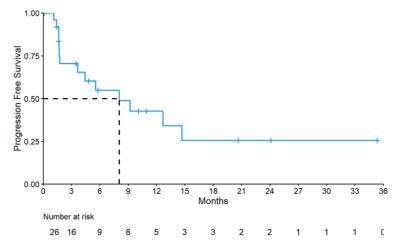
Pembrolizumab 200 mg IV Q3W PLD 40mg/m² IV Q4W

Primary objective

CBR (CR + PR+ SD > 24w)


Pembrolizumab plus PLD

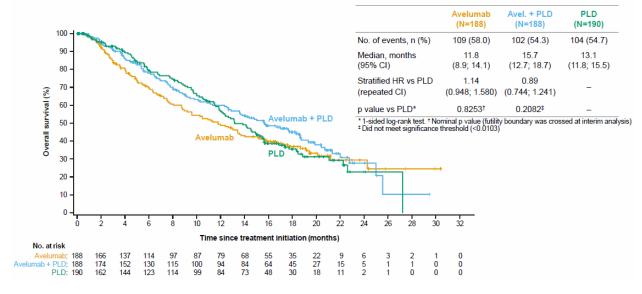
PRROC pts were treated with combination therapy in this MISP.


Best Overall Response – 26.1% CBR: 52%

	Overall (n=26)
Best Overall Response	
Complete Response	1 (3.8%)
Partial Response	5 (19.2%)
SD ≥24 weeks	6 (23.1%)
SD <24 weeks	6 (23.1%)
Progressive Disease	5 (19.2%)
Unevaluable	3 (11.5%)

Waterfall Plot

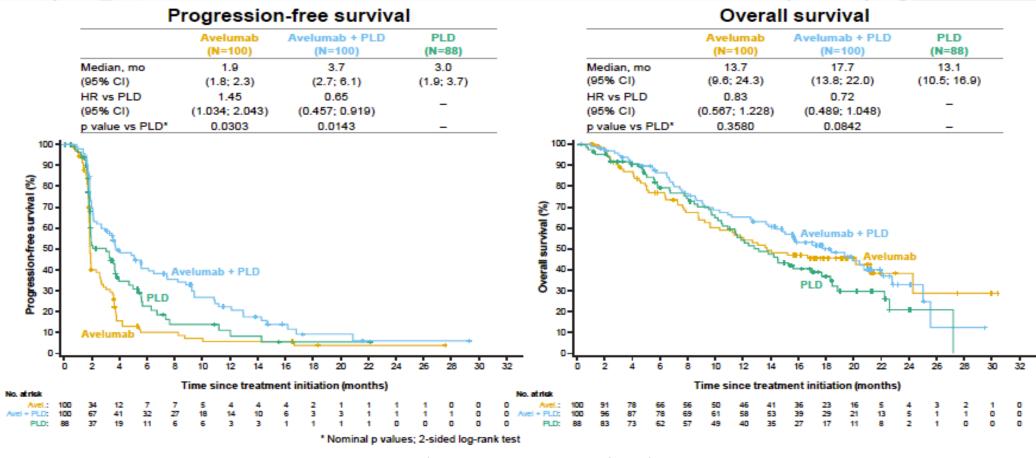
Progression-Free Survival – 8.1 months


IO in PRROC: JAVELIN Ovarian 200, the first ICB RP3 in PRROC was negative

Avelumab appeared to nominally improve on PLD monotherapy efficacy but not enough to result in a positive trial. Avelumab monotherapy activity in PRROC was minimal; ORR was 3.7%.

Progression-free survival by BICR

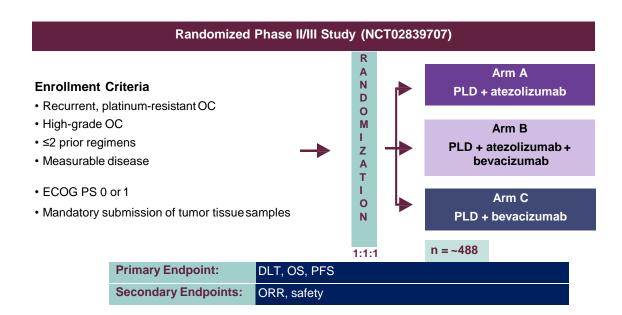
Overall survival


Possible reasons for failure:

- 1) Avelumab is a weak immune checkpoint inhibitor
 - ORR: 4% (1.5; 7.5);
- 2) PLD is not an optimal chemotherapy combination partner
 - ORR: 4 % (1.8; 8.1);
 - Combined Avelumab/PDL ORR: 13 %

JAVELIN Ovarian 200 Results: PFS in PD-L1+ subgroup exploratory analysis

PD-L1 status was evaluable in 508 patients (SP263 Ventana platform)
The cutoff: at least 1% of tumor cells expressing PD-L1 or more than 5% of immune cells expressing PD-L1



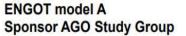
The HR of 0.65 for PFS and 0.72 for OS in PD-L1 + patients suggests that PD-L1 expression is a predictor of clinical benefit.

Advances in Cancer ImmunotherapyTM

NRG-GY009: Phase II/III PLD With Atezolizumab and/or Bevacizumab in Platinum-Resistant Recurrent OC

Actual Study Start Date: May 12, 2017

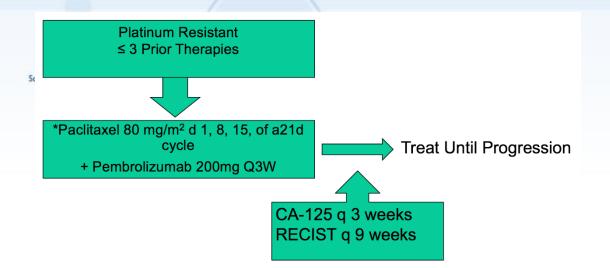
Estimated Primary Completion Date: June 30, 2023 Estimated Study Completion Date: June 30, 2023



ENGOT-ov34 AGO-OVAR 2.29

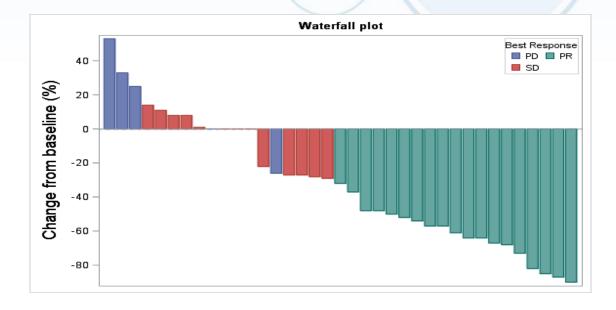
- Epithelial ovarian, fallopian tube or primary peritoneal cancer
- 1st or 2nd relapse with TFI p < 6 months or 3rd relapse
- Prior Bevacizumab allowed
- Bev and atezolizumab specific exclusion criteria
- · Archival and recent biopsy mandatory
- PS 0/1, life expectancy > 3 months

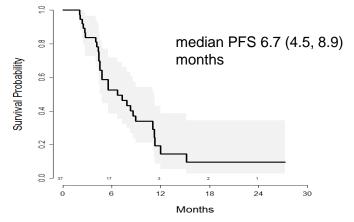
* In arm 1 and 2 cohorts capping: 50% PLD and 50% Paclitaxel

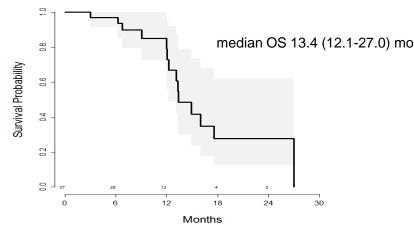

PLD, pegylatiertes liposomales Doxorubicin; PS: Performance status

1:1 n=664 PLD or Paclitaxel (qw)* + Bevacizumab + Placebo

PLD or Paclitaxel (qw)* + Bevacizumab + Atezolizumab


Mandatory Biopsy


- Participating groups:
- AGO Germany (recruiting)
- AGO Austria, BGOG, GEICO, GINECO, NSGO, SAKK
 Submission to Ethics Committee and Authority ~ Q4 2018
- → Recruitment start expected for 2019
- Planned No. of patients: 664
- 664 patients in about 150 sites



Best Response	N of Patients	% Evaluable (n=37)	% Treated (n=41)
CR	0	0	0
PR	19	51.4%	46.3%
SD	13	35.1%	31.7%
PD	5	13.5%	12.2%
Unassessed	4	NA	9.8%
DCR	32	86.5%	78%

Phase II of weekly Paclitaxel with Pembrolizumab in PRROC

AURELIA Results by Chemotherapy Subgroup

Weekly paclitaxel is the most active PRROC chemotherapy treatment with or without bevacizumab.

Combination	N/Lines of treatment	mPFS (CT +bev vs CT)	ORR (CT+bev vs CT)	mOS* (CT+bev vs CT)	mDoT CT+bev vs CT
Chemotherapy +/- bevacizumab10 mg/kg Q2W	361 PRROC (no refractory) up to 2L of prior treatment	6.7 vs 3.4 months HR: 0.48 (0.38, 0.60; <i>P</i> .001).	27.3% vs 11.8% (P .001)	16.6 vs 13.3 HR: 0.85 (0.66, 1.08); <i>P</i> =0.174; NS	6 cycles (1-24) vs 3 cycles (1-17) 1 cycle=4 w (except topotecan)
Paclitaxel 80mg/m ² IV on days 1, 8, 15, and 22 every 4 weeks +/-bevacizumab 10 mg/kg Q2W	115 PRROC (no refractory) up to 2L of prior treatment	10.4 v 3.9 months HR: 0.46 (0.30, 0.71)	53.3% vs 30.2%	22.4 v 13.2 months Unadjusted HR: 0.65 (0.42,1.02) NS	
PLD 40 mg/m ² IV on day 1 Q4W +/- bevacizumab 10 mg/kg Q2W	126 PRROC (no refractory) up to 2L of prior treatment	5.4 v 3.5 months HR: 0.57 (0.39, 0.83)	13.7% vs 7.8%	13.7 m vs 14.1 m Unadjusted HR: 0.91 (0.62,1.36) NS	
Topotecan 4 mg/m ² IV on days 1, 8, and 15 every 4 weeks or 1.25 mg/m ² on days 1 to 5 Q3W +/- bevacizumab 10 mg/kg Q2W or 15 mg/kg Q3W in patients receiving topotecan in a schedule Q3W	120 PRROC (no refractory) up to 2L of prior treatment	5.8 v 2.1 months HR:0.32 (0.21, 0.49)	17.0% vs 0.0%	13.8 v 13.3 m Unadjusted HR: 1.09 (0.72,1.67) NS	

Keynote-B96/Engot-65 – ongoing clinical trial

Key Eligibility Criteria

- Platinum Resistant OC patients (refractory excluded)
- Up to 2L of prior therapy
- ECOG PS 0, 1
- Prior anti PD-1/PD-L1 allowed
- Prior PARPi allowed
- Prior bevacizumab allowed

Primary Endpoint: PFS

Stratification factors for randomization

- Bevacizumab use
- PD-L1 status
- Prior anti PD-1/PD-L1

Immune effects of NACT: Take home points

NACT

Immune Stimulation

- ↑ CD8, CD4
- ↓ FOXP3+
- ↑ CD8/FOXP3
- 个 Mature DCs

Immune Suppression

- ↑ PD-L1 in tumor cells
- ↑ PD-L1 in immune cells
- ↑ PD-1 in T cells

Rationale for frontline CHEMO + IO combinations

Immune Effects of NACT : Current Study

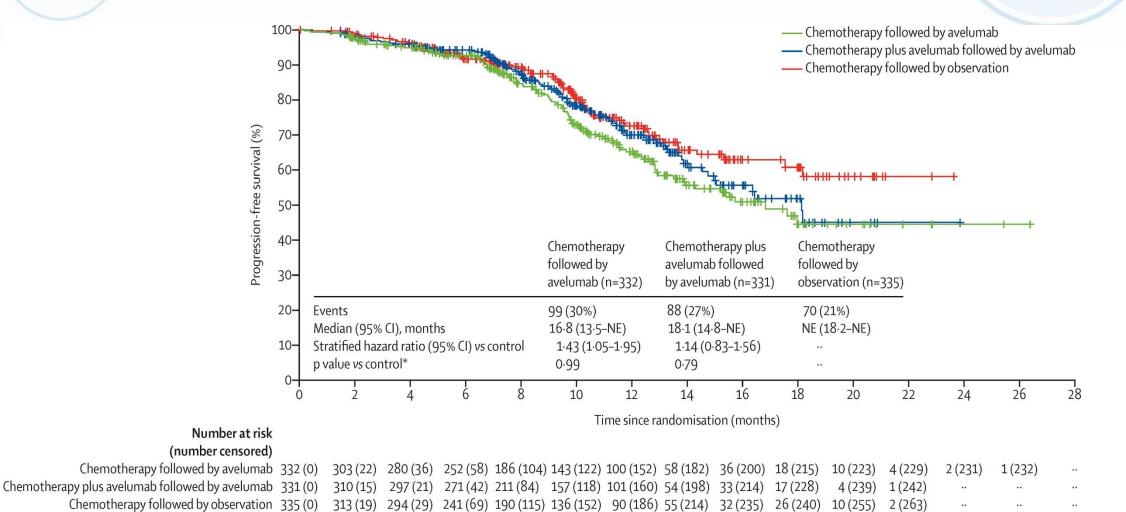
Study	Paired samples	TILs	CD8+	CD4+	FOXP3+	CD20+	CD68+	CD163+	DCs	Granzyme	PD-1	PD-L1
Mesgagne et al.	n=83	↑ (stromal)										个 (immune cells)
Polcher et al.	n=30		↑	↑	\rightarrow					↑		ŕ
Lo et al.	n=26	↑ (CD3+)	↑	个 (trend)	\rightarrow	↑	\rightarrow		→ (CD1a)	\rightarrow	↑	
Bohm et al.	n=25		\rightarrow	→ (but↑IFNγ and Th1 signature)	↓ (in good responders)						↑	↑
CHIVA STUDY	n=86		↑	↑	V		\rightarrow	\rightarrow	1			

NOVEL FINDINGS FROM CHIVA: i) ↓ FOXP3+, ↑ CD8/FOXP3+ ratio

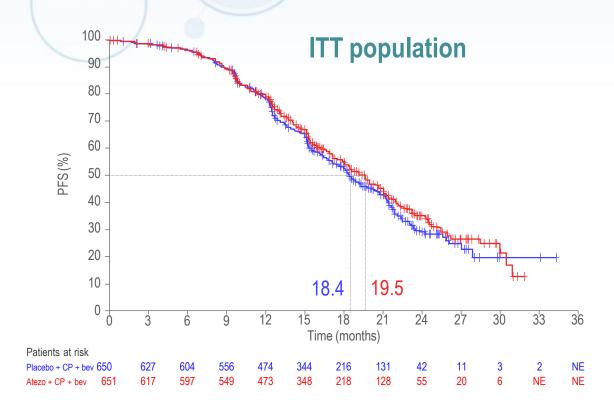
ii) ↑ Mature DCs

iii) No change in M1 / M2 and NK cells

Advances in Cancer ImmunotherapyTM Anti-PD-L1 in combination with chemotherapy


	TRIAL	CONTROL ARM	EXPERIMENTAL ARM	N	PFS (HR 95%CI)	Reference
	First Line					
J	Javelin 100	Cx: Q3W carboplatin+paclitaxel OR carboplatin + weekly paclitaxel	Cx + avelumab maintenance up to 2 yrs OR Cx & avelumab + avelumab maintenance up to 2 yrs	951	1.43 (1.05-1.95) 1.14 (0.83-1.56)	Lederman JA et al SGO 2020
	magyn050 GOG 3015	carboplatin+paclitaxel& bevacizumab + placebo & bevavizumab + placebo maint.	carboplatin+paclitaxel& bevacizumab + atezolizumab & bevacizumab + atezolizumab maint.	1301	0.92 (0.79-1.07	Moore K et al ESMO 2020

Advances in Cancer ImmunotherapyTM


Javelin-100

Advances in Cancer Immunotherapy Imagyn050/GOG 3015 phase 3 trial

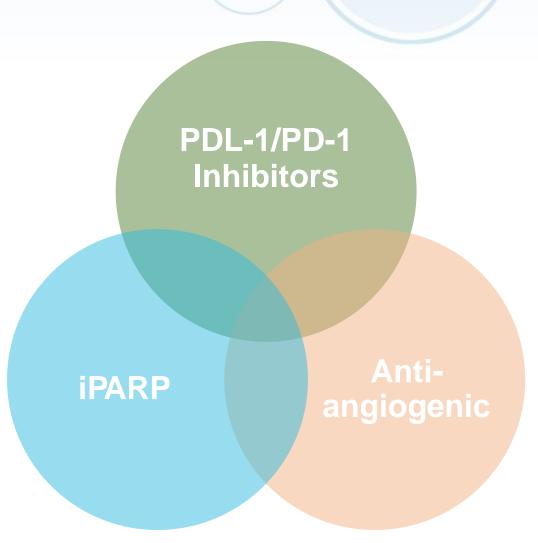
	100	╼┾╼┿┿		The state of the s			PD-	L1+	pol	pula	tior		
	80 _			1									
	70 –				***	+√√ √√+ √√−							
	60 –					A PARTY OF THE PAR	************************************						
PFS(%)	50 -						A++++	#1 ₄₊₁₄ 					
ā	40 -								╫╫╫╫╫ ╩╷	<u>.</u>			
	30 –								^{┅┸} ╫╫╁╫	╵┖╫╼╫╼┥ ┾╫ _{┖╫┨╫╫} ╗	+++1 		
	20 -											+	
	10 -					1	8.5	20	8.0				
	0 +	3	6	9	12	15 Tim	18 ne (mon	21 ths)	24	27	30	33	36
Patients at r		379	366	336	288	209	127	82	27	9	2	2	NE
Atezo + CP + b		374	362	335	294	218	136	74	32	13	4	NE	NE

	ITT population						
PFS	Placebo + CP + bev (n=650)	Atezo + CP + bev (n=651)					
Patients with events, n (%)	341 (52.5)	323 (49.6)					
Median PFS, months (95% CI)	18.4 (17.2–19.8)	19.5 (18.1–20.8)					
Stratified HR (95% CI)	0.92 (0.79–1.07)						
Stratified log-rank p-value	0.27	785					
2-year event-free rate (95% CI)	29.1 (23.9–34.3)	35.1 (30.0–40.3)					

PD-L1+ population				
Placebo + CP + bev (n=393)	Atezo + CP + bev (n=391)			
199 (50.6)	167 (42.7)			
18.5 (16.6–21.4)	20.8 (19.1–24.2)			
0.80 (0.65–0.99)				
0.0376				
32.2 (25.4–39.0)	43.9 (37.2–50.5)			

		Plus Be	oo Plus CP vacizumab = 650)	Plus B	umab Plus CF levacizumab n = 651)		Atezolizumab Plus CP	Placeho Plus CP
			Median		Median		Plus Bevacizumab	Plus Bevacizumab
Baseline Risk Factors	N	n	(months)	n	(months)	HR (95% Wald CI)	Better	Better
All patients	1,301	650	18.4	651	19.5	0.92 (0.79 to 1.07)		/
Age, years (by group)								
18-40	66	30	19.6	36	20.6	0.58 (0.35 to 1.30)		H
41-64	813	399	18.2	414	19.6	0.90 (0.74 to 1.10)		
≥ 65	422	221	18.8	201	18.0	1.01 (0.78 to 1.32)	н	H
Race	005	401	10.1	404	10.0	0.07 (0.00 += 1.10)		
White Asian	925 305	461 155	18.1 21.2	464 150	18.2 21.6	0.97 (0.82 to 1.16) 0.78 (0.55 to 1.10)		· ·
Black or African American	21	13	19.1	8	24.2	0.52 (0.13 to 2.07)		
Other	50	21	18.2	29	19.7	1.06 (0.48 to 2.32)		
Baseline ECOG PS	30	21	10.2	23	13.7	1.00 (0.48 to 2.32)	_	
0	708	353	18.4	355	20.2	0.87 (0.70 to 1.07)	H	4
ĭ	529	266	18.7	263	18.3	1.00 (0.79 to 1.27)		<u> </u>
2	64	31	18.2	33	17.1	0.87 (0.42 to 1.81)		
Treatment approach	-							
Neoadjuvant	332	166	17.2	166	16.6	1.12 (0.85 to 1.47)	H	-
Primary surgery	969	484	18.4	485	19.8	0.84 (0.70 to 1.01)	H	
No gross residual disease	72	41	22.1	31	19.3	2.27 (0.89 to 5.77)	H	•
Residual disease ≤ 1 cm	499	245	18.3	254	21.1	0.78 (0.60 to 1.01)	H	
Residual disease > 1 cm	398	198	17.1	200	18.6	0.80 (0.61 to 1.05)	H	4
Disease stage								
Stage III	896	448	18.4	448	20.6	0.80 (0.67 to 0.97)		
Stage IV	404	201	18.4	203	17.1	1.24 (0.95 to 1.63)		
Histological type								
High-grade serous	993	489	19.0	504	19.3	1.01 (0.84 to 1.20)		
High-grade nonserous	155	87	15.7	68	19.9	0.69 (0.45 to 1.07)		†
Clear cell	51 125	22 58	12.3 20.4	29 67	13.6 19.7	0.64 (0.33 to 1.24)		۲. I
Low-grade serous PD-L1 status	125	58	20.4	67	19.7	0.83 (0.50 to 1.38)	⊢	Γ Ι
PD-L1 IC status							1	
IC < 1%	517	257	18.3	260	17.4	1.06 (0.84 to 1.33)	ı.	<u>_</u>
IC ≥ 1% to < 5%	524	252	18.2	272	19.3	0.89 (0.55 to 1.13)		<u>,</u> '
IC ≥ 5%	260	141	20.2	119	NE	0.64 (0.43 to 0.96)		i'
PD-L1 TC status	200		20.2			0.04 (0.40 to 0.00)		
TC < 1%	1,228	610	18.4	618	19.2	0.96 (0.82 to 1.12)	ı ı	
TC ≥ 1%	73	40	15.0	33	NE	0.41 (0.19 to 0.90)	_	
						2111 (2112 12 0100)	, , , , , , , , , , , , , , , , , , , 	
							0.1	1 10
							HR (95%	Wald CI)

Imagyn050/ GOG 3015 subgroup analysis

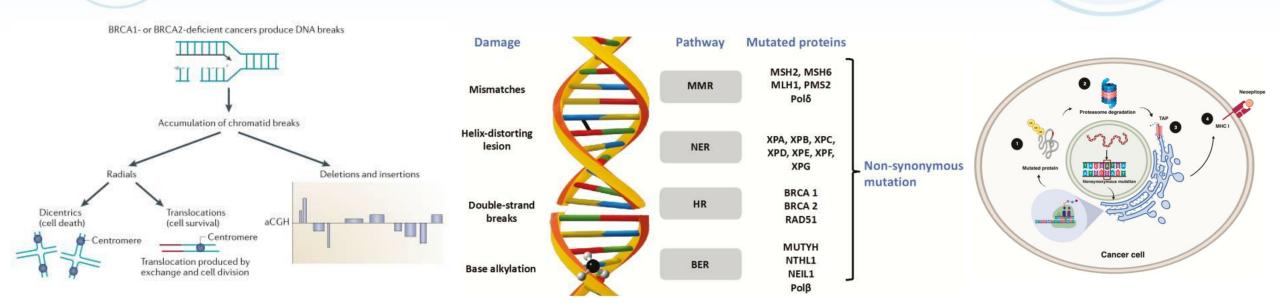


NEW COMBINATIONS (CHEMO-FREE)

PARPi + antiangiogenic agents

PARPi+ Immunotherapy

Immunotherapy + antiangiogenic agents



Advances in Cancer ImmunotherapyTM

PARP Inhibitors in Combination with Immuno-Oncology Agents: Rationale

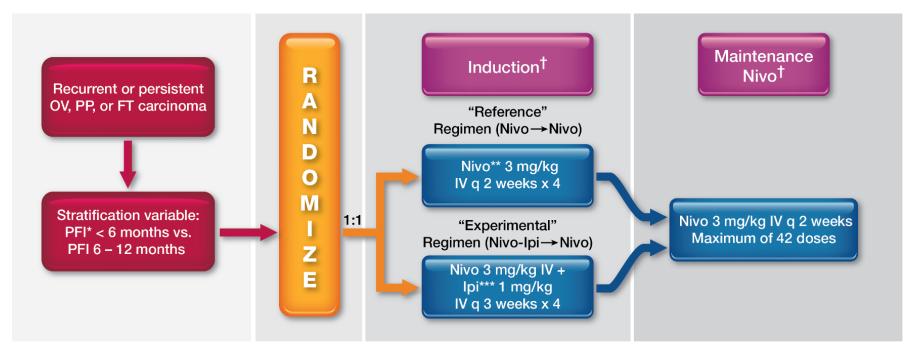
 BRCA mutated tumors:) have a high mutational load and a higher number of protein-coding mutations (neoepitopes) due to the inability of the cancer cell to repair DNA damage effectively

 BRCA1/2 mutant and HR-deficient tumours are correlated with higher PD-L1 expression and CD8 T-cell infiltration that predict PD-(L)1 mAb response

> Roy R., Nat.Rev.Cancer, 2012 Alvarado-Cruz I et al., Mutagenesis, 2020

PARP-I +IO Trials

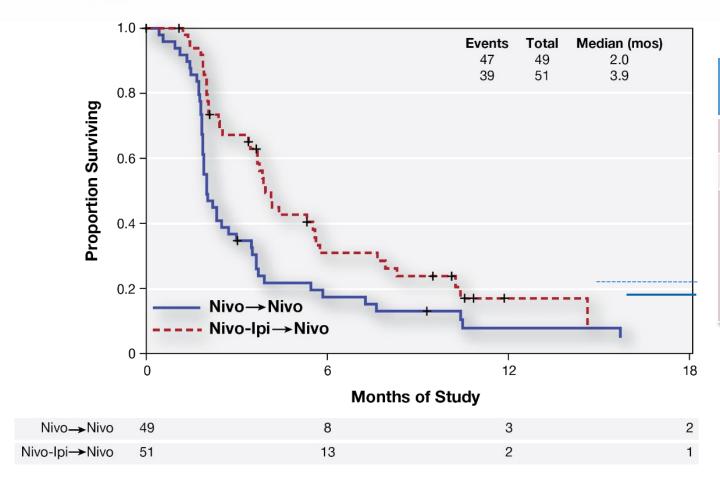
Combination Therapy	Inclusion	Phase	patient number	# of prior threapies	ORR	Reference
Durvalumab + olaparib	Recurrent OC	1	12	>1, 50%>4	17% PR 66% SD	Lee et al 2017
Durvalumab + cediranib			12		50% PR 25% SD	
Durvalumab + olaparib MEDIOLA	Platiunum sensitive BRCAmut	2	32	>1	19% CR 44% PR 9% SD	Drew et al 2018
Pembrolizumab+ niraparib TOPACIO	Platinum resistant OC	2	62	<5	25%ORR 42% SD; BRCAmut: 25% ORR, 38% SD	Konstantinopoulos et al 2018


Ongoing trials in 1L with ImmuneTx

	ATHENA	FIRST	ENGOT OV43	DUO-O
Sponsor	Clovis	Tessaro	Merck	Astra Zeneca
Group leader	GOG(NCRI)	GINECO (GOG??)	BGOG(leading) – unsure whether GOG will join as supporting groups	AGO(GOG)
ENGOT Model	С		С	С
Randomisation	Maintenance	Upfront	Upfront	Upfront
Bev in Standardarm	No	Optional	Optional	Yes
Exp. Arm	Ruca-NivoluRucaNivolu	- Nira - Nira + O42	BRCA+: Ola +Pembro BRCA-: Pembro Pembro+Ola	- Durva - Durva+Ola
NACT allowed	Yes	Yes	Yes	Yes
RT=0	CR/NED after CT	No	Yes	Yes
Endpoint	PFS	PFS	PFS+OS	PFS
MITO	6	A8	C 10	B 10

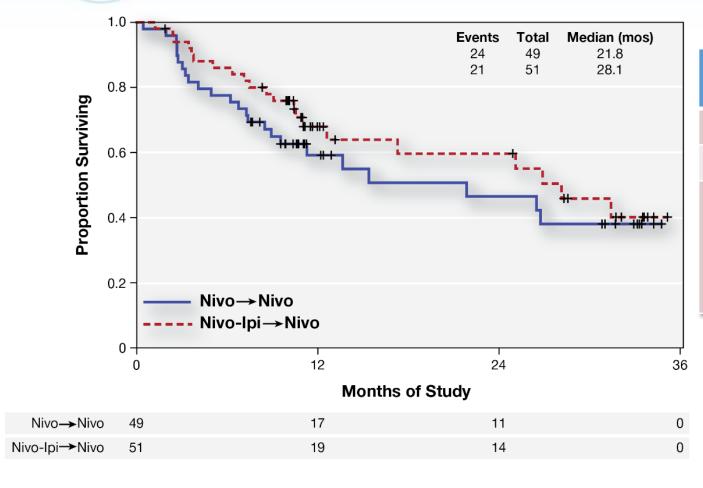
IO+IO COMBINATION IN OC

Phase II Randomized Trial of Nivolumab With or Without Ipilimumab in Patients with Persistent or Recurrent Ovarian Cancer (NRG GY003)



- * Platinum-Free Interval
- ** Nivolumab
- *** Ipilimumab
- † Protocol-directed therapy until progression or unacceptable toxicity

NRG GY003: PFS by Treatment Group


		Nivo→Nivo (n=49)	Nivo-Ipi→Nivo (n=51)
Patients with event, n (%)		47 (95.9)	39 (76.5)
Median PFS, months		2.0	3.9
Observed	HR (95% CI)	Reference	0.528 (0.339–0.821)
by PFI	ratified PFI Two-sided p-value (log-rank)		0.0041

Advances in Cancer ImmunotherapyTM

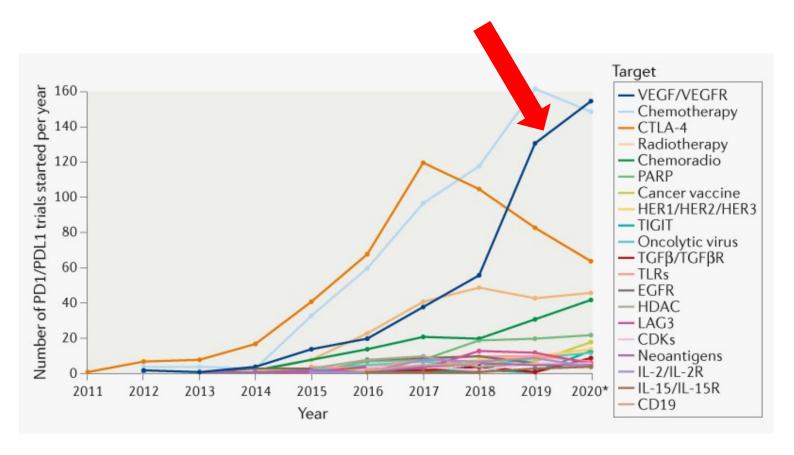
NRG GY003: OS by Treatment Group

		Nivo→Nivo (n=49)	Nivo-Ipi→Nivo (n=51)
Patients with even	t, n (%)	24 (49.0)	21 (41.1)
Median OS, month	ns	21.8	28.1
Observed	HR (95% CI)	Reference	0.789 (0.439–1.418)
Stratified by PFI	Two-sided p-value (log-rank)		0.43

NRG GY003: Subgroup Analyses

		Statistic (95% CI)		
Characteristic	Response*	PFS**	OS**	
Age: > vs ≤ median	0.653 (0.244-1.748)	1.002 (0.638-1.574)	1.499 (0.818-2.747)	
PS: > 0 vs 0	1.210 (0.422-3.471)	0.843 (0.519-1.368)	1.295 (0.681-2.465)	
Prior cytotoxic regimens: >1 vs 1	0.676 (0.220-2.079)	1.021 (0.602-1.730)	1.150 (NA***)	
PFI: ≥ 6 vs < 6 months	1.900 (0.709-5.091)	0.662 (0.418-1.047)	0.518 (0.273-0.984)	
Cell type: clear cell vs other	5.205 (1.370-19.774)	0.562 (NA)	1.674 (NA)	

^{*} Logistic regression, odds ratio, adjusted for treatment group



^{**} Cox proportional hazards model, hazard ratio, adjusted for treatment group and PFI

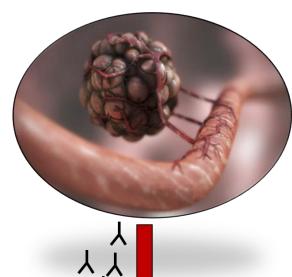
^{***} Not available, insufficient number of events

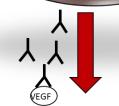
ICB + anti-VEGF/VEGFR COMBINATION

Rationale for Combining Cancer Immunotherapy with Anti-VEGF

Tumor neovascularization

VEGF


Immunomodulation


Angiogenesis → Tumor growth

Lymphangiogenesis → Metastasis

Hypoxic/acidic microenvironment

Interstitial fluid pressure Adhesion molecules on EC \downarrow **Decrease T cell transmigration**

Promotes immunosuppression

- T reg expansion
- **MDSC** expansion
- **TAM** expansion
- DC maturation

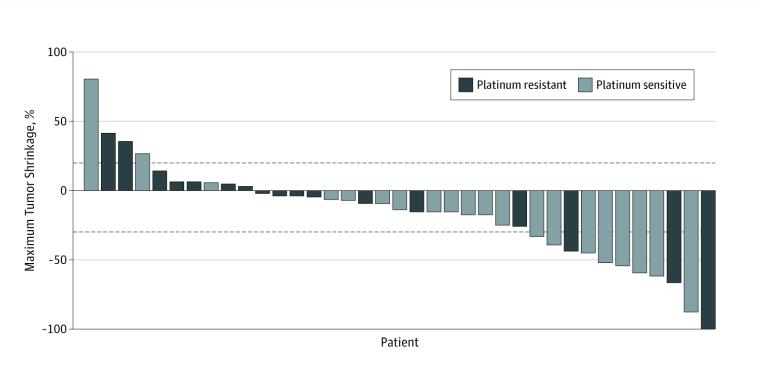
T cell inhibition

- Effector function \downarrow
- Trafficking ↓
- T cell apoptosis by FasL on EC

Tumor vessel "normalization" Decrease local immunosuppression Increase T cell infiltration to TME

Maj E et al 2016 Yang Jel al 2018 Alaoui-Lasmaili et al 2018

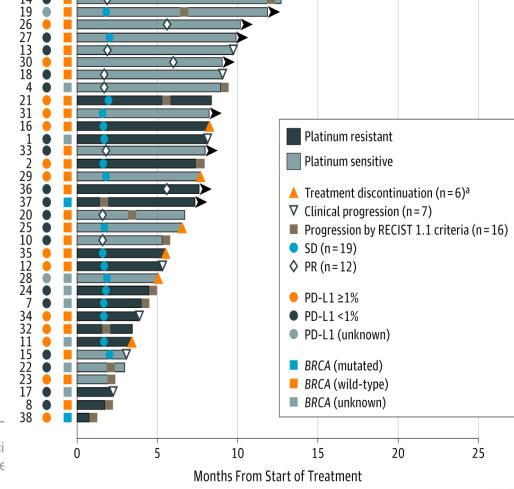
Credit: EQUINOX GRAPHICS


JAMA Network ances in Cancer Immunotherapy

From: Assessment of Combined Nivolumab and Bevacizumab in Relapsed Ovarian Cancer: A Phase 2 Clinical

Patient

Trial


JAMA Oncol. 2019;5(12):1731-1738. doi:10.1001/jamaoncol.2019.3343

ORR: 29% Median PFS: 8.1 months

Copyright 2019 American Medical Associ All Rights Rese

CT scan Bevacizumab Pembrolizumab Cyclophosphamide Patient **Primary Eandpoint** TME Progression-free survival (PFS) **Secondary Endpoint** Objective Response Rate (ORR) Overall survival (OS) Toxicity and Quality of Life (QoL) **Exploratory Endpoints** Change in TME Stool Microbiome and metabolite composition Pre-Tx On-Tx Post-Tx

Tumor Biopsy

Blood Draw

Microbiome Samplling

Research

JAMA Oncology | Original Investigation

Efficacy and Safety of Pembrolizumab in Combination With Bevacizumab and Oral Metronomic Cyclophosphamide in the Treatment of Recurrent Ovarian Cancer A Phase 2 Nonrandomized Clinical Trial

Emese Zsiros, MD, PhD; Sarah Lynam, MD; Kristopher M. Attwood, PhD; Chong Wang, MA; Shanmuga Chilakapati, PhD; Eduardo Cortes Gomez, MS; Song Liu, PhD; Stacey Akers, MD, MBA; Shashikant Lele, MD; Peter J. Frederick, MD; Kunle Odunsi, MD, PhD

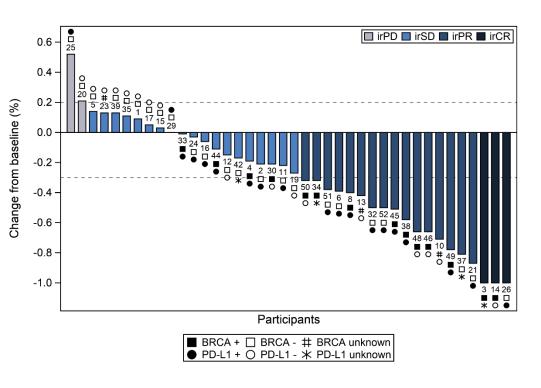
Best Response	Platinum -sensitive n=10 (%)	Platinum- resistant n=30 (%)	Total n=40 (%)	
Complete response	0	3 (10%)	3 (7.5%)	
Partial response	6 (60%)	10 (33.3%)	16 (40%)	
Stable disease only				
≥ 24 weeks	3 (30%)	8 (26.7%)	11 (27.5%)	
< 24 weeks	1 (10%)	7 (23.3%)	8 (20%)	
Progressive disease	0	2 (6.7%)	2 (5%)	
Objective response rate (irCR + irPR)	6 (60%)	13 (43.3%)	19 (47.5%)	
Total clinical benefit (irCR + irPR + irSD)	10 (100%)	28 (93%)	38 (95%)	
Median DOR * (months, range)	11.5 (11.6- 21.3)	5.8 (0.9- 26.5)	5.9 (0.9-26.5)	

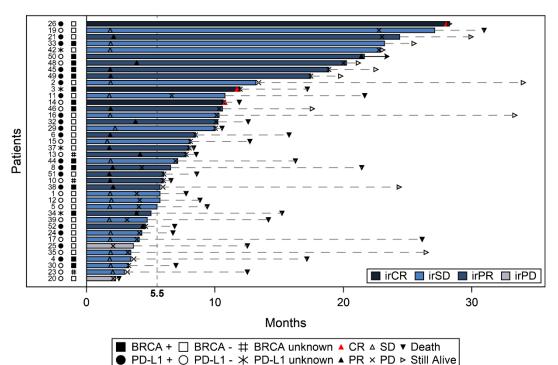
Tumor Biopsy

Blood Draw

Microbiome Samplling

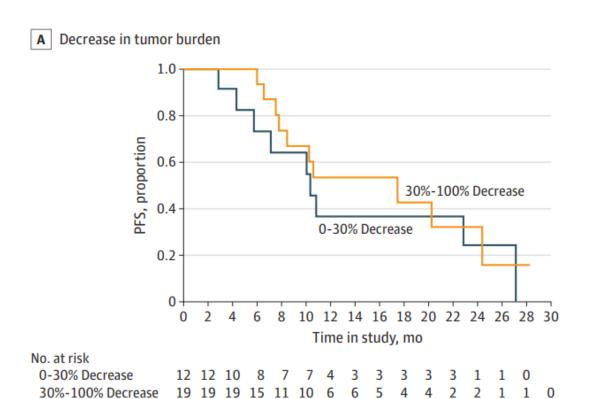
Tumor Biopsy


Blood Draw 👤

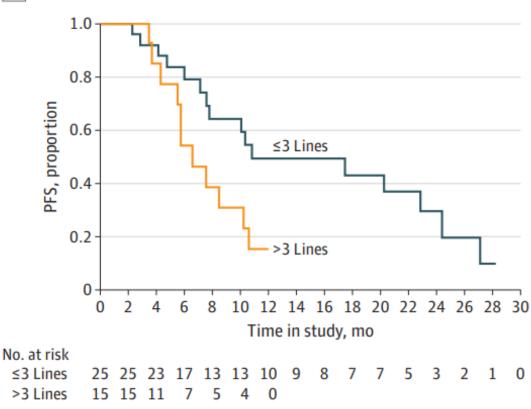

Microbiome

Samplling

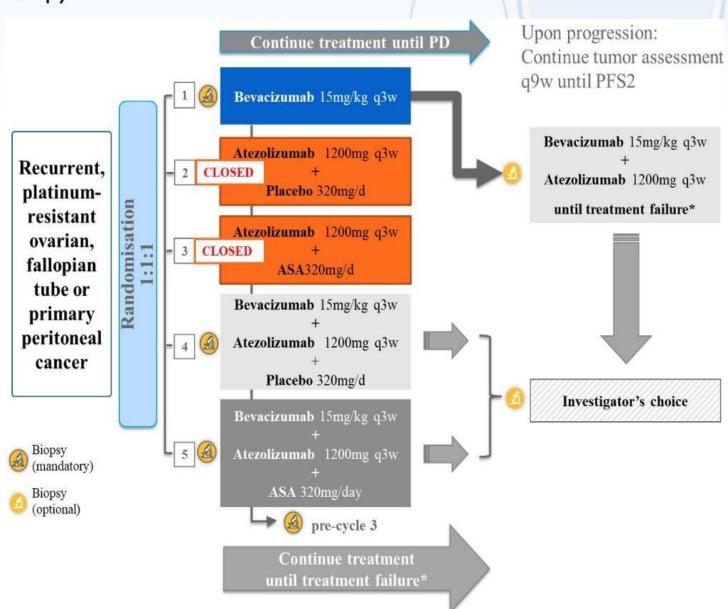
Pembrolizumab+ Bevacizumab + oral Cytoxan in recurrent OC

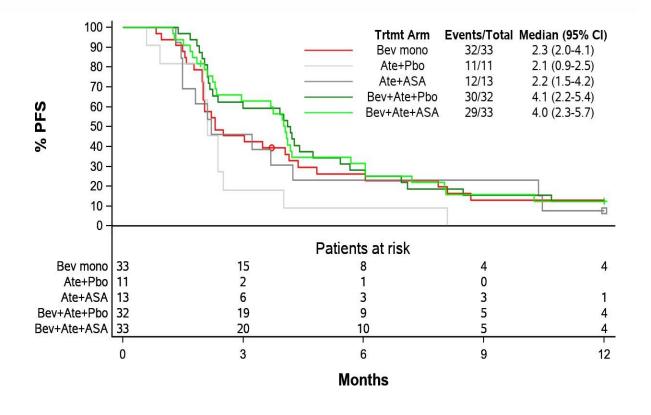


25% of the patients had PFS> 12 months

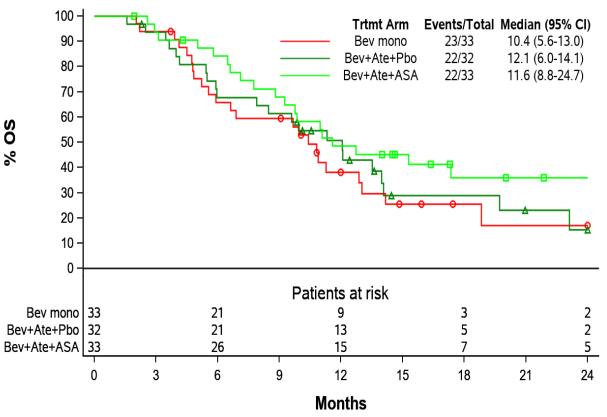


No significant difference in PFS between patients with 0% to 30% decrease in tumor burden vs. those with more than 30% to 100% decrease in tumor burden, (log-rank P = .47).


Among patients with 3 or fewer prior lines of chemotherapy, median 6-month PFS median PFS, **10.8** (90% CI, 7.6-24.4) months. Among patients with more than 3 prior lines of chemotherapy, median PFS, **6.5** (90% CI, 4.3-10.2) months (P = .03).



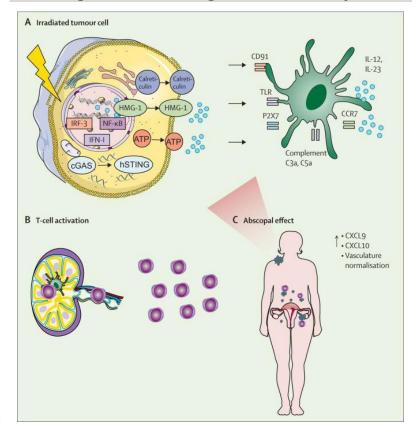
Principal results of the EORTC-1508 trial: A phase II randomized, multicenter study of bevacizumab vs atezolizumab and bevacizumab with acetylsalicylic acid or placebo in recurrent platinum-resistant ovarian, fallopian tube or primary peritoneal adenocarcinoma



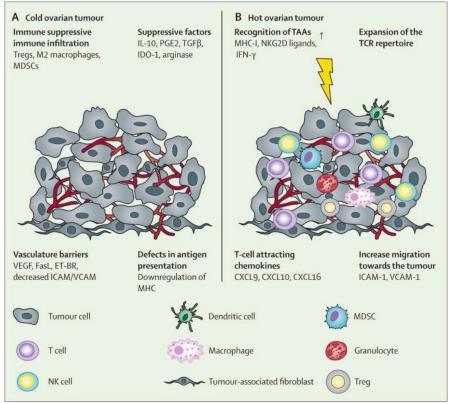
Progression-Free Survival

Overall Survival (Arm 1,4,5)

Ate+Pbo and Ate+ASA arms recruitment closed Jan 2019

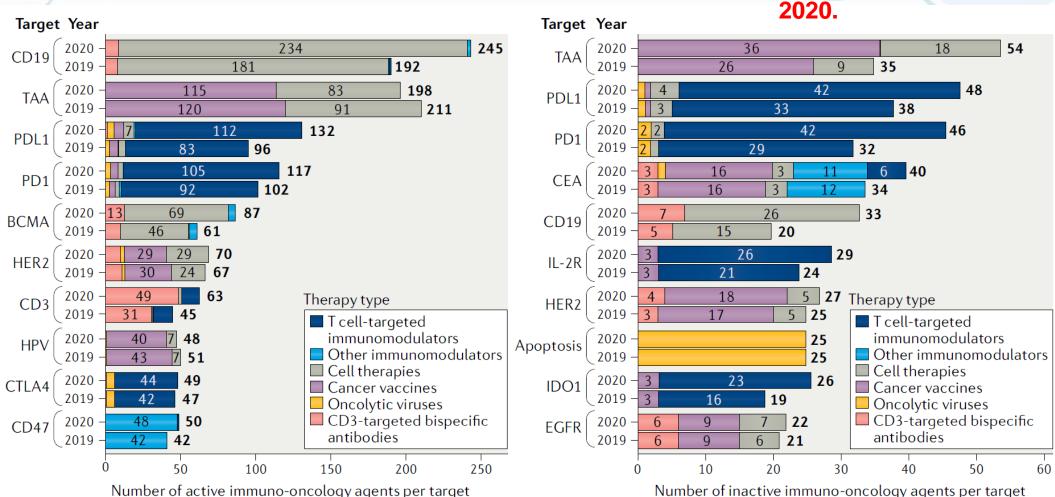

Advances in radioimmunotherapy 2

Rational combinations of immunotherapy with radiotherapy in ovarian cancer


Fernanda G Herrera, Melita Irving, Lana E Kandalaft, George Coukos

Priming and Activating the immune system

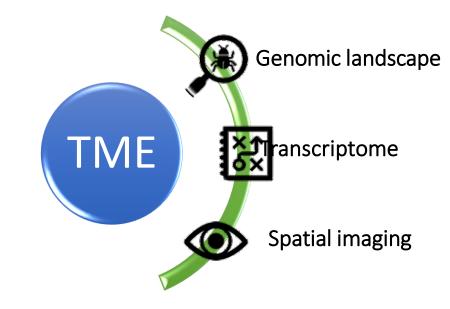
Reprogramme the tumour microenvironment



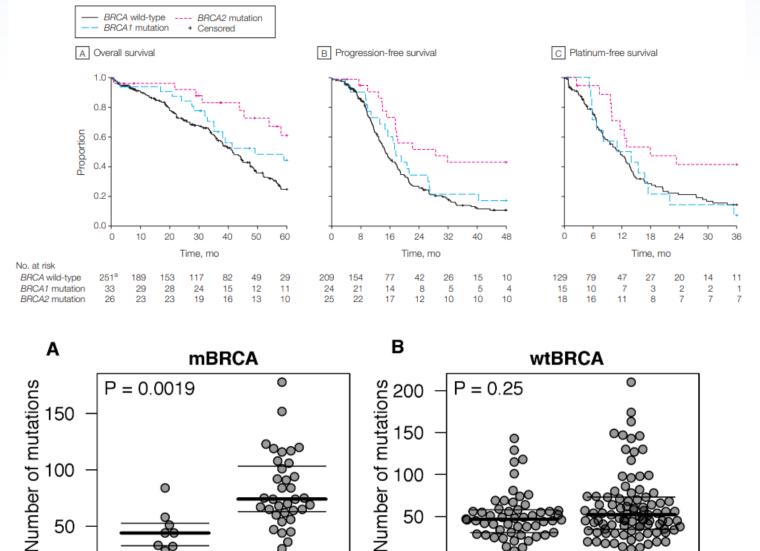
THE LANCET

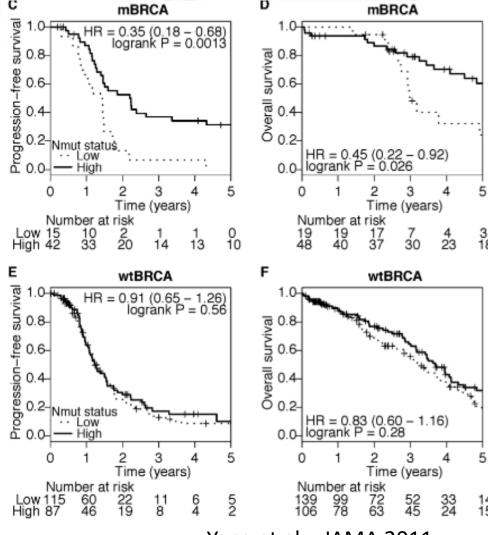
What is the in future?

Top immuno-oncology targets for active and deprioritized agents in the drug development pipeline from 2019 and



BIOMARKERS FOR RESPONSE TO ICB THERAPY

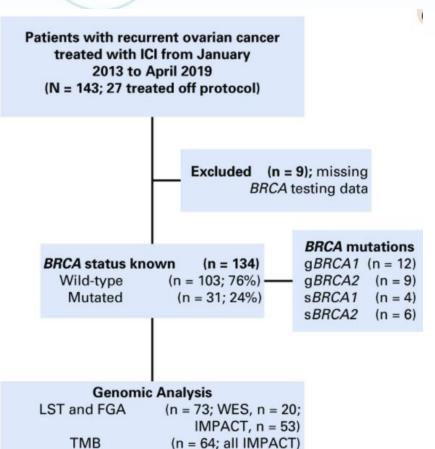

- Clinically Applicable Biomarkers
- BRCA mutation
- MSI and TMB
- PD-L1 staining
- Tissue based biomarkers
- TILs
- B cells and tertiary lymphoid structures
- New genomic biomarkers
- Transcriptomic signatures
- Host factors

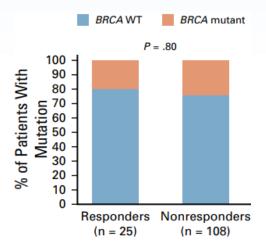

mBRCA as a marker for improved clinical outcome

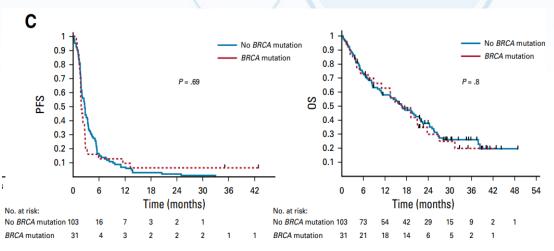
50

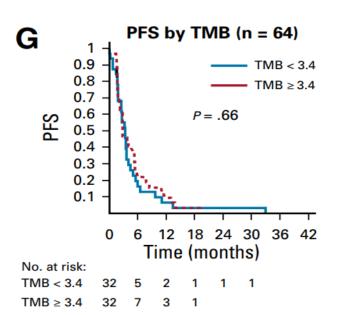
Resistant

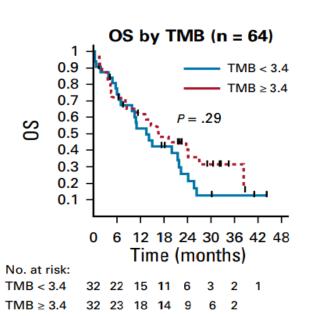
Sensitive

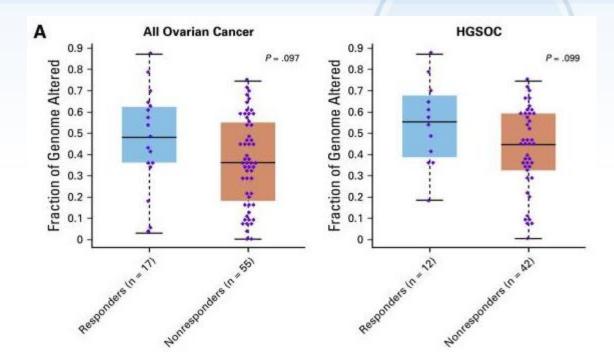


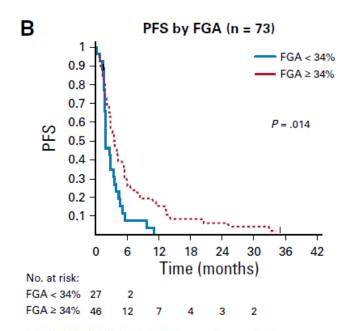

Resistant

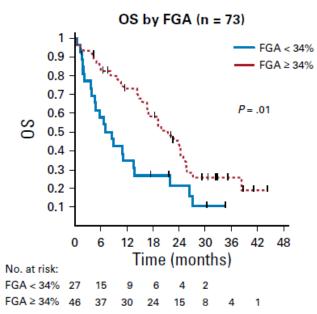

Sensitive

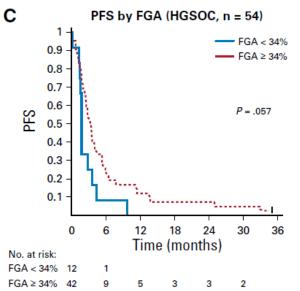


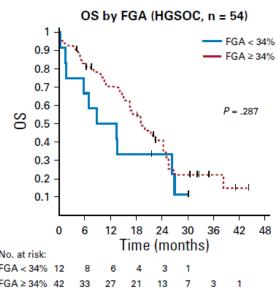

TMB and HRD markers may not predict response to ICB










Fraction of Genome Altered as a potential biomarker for ICB response

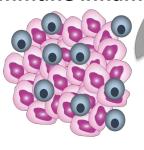
TILS in OC as a prognostic marker

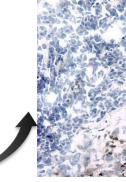
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Intratumoral T Cells, Recurrence, and Survival in Epithelial Ovarian Cancer

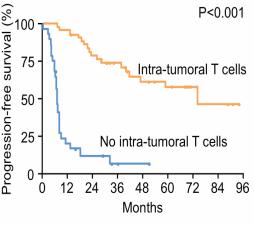
Lin Zhang, M.D., Jose R. Conejo-Garcia, M.D., Ph.D., Dionyssios Katsaros, M.D., Ph.D., Phyllis A. Gimotty, Ph.D., Marco Massobrio, M.D., Giorgia Regnani, M.D., Antonis Makrigiannakis, M.D., Ph.D., Heidi Gray, M.D., Katia Schlienger, M.D., Ph.D., Michael N. Liebman, Ph.D., Stephen C. Rubin, M.D., and George Coukos, M.D., Ph.D.


CD3+

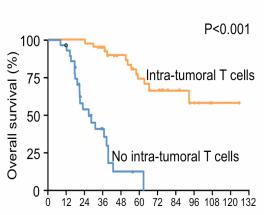

Immune inflamed

55%

HOT TME



TILs present


At 96 months:

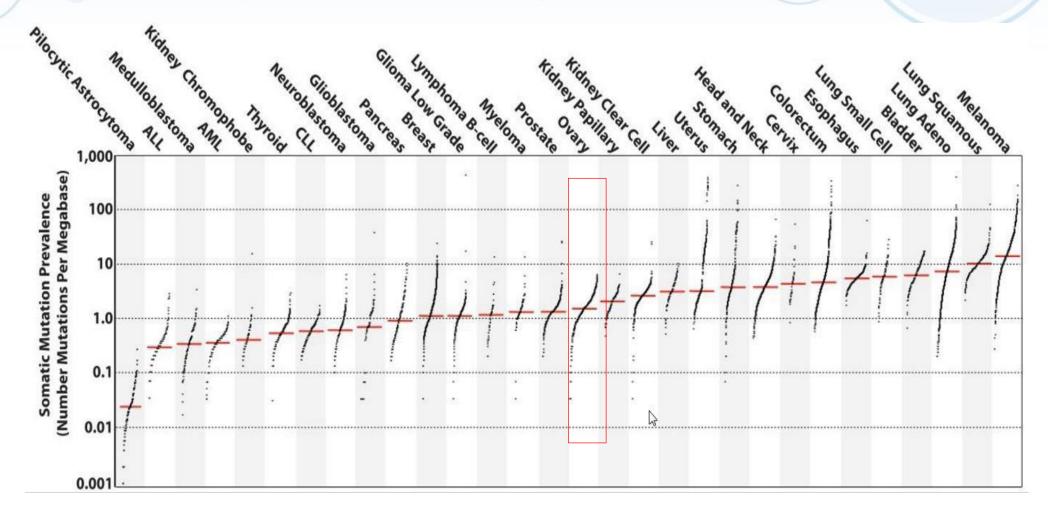
50% in remission

At 96–132 months:

>60% alive

Months

COLD TME


or excluded 45%

TILs absent

Immune ignorance

Is there neo-epitope specific recognition in Ovarian Cancer?

Not all TILs are created equal

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Zhang(2003)	1.65	0.18	9.8%	5.21 [3.66, 7.41]	2003	-
Sato(2005)	0.67	0.26	4.7%	1.95 [1.17, 3.25]	2005	
Hamanishi(2007)	2.03	0.5	1.3%	7.61 [2.86, 20.29]	2007	
Han(2008)	0.56	0.23	6.0%	1.75 [1.12, 2.75]	2008	
Tomsova(2008)	1.32	0.25	5.1%	3.74 [2.29, 6.11]	2008	
Adams(2009)	0.69	0.21	7.2%	1.99 [1.32, 3.01]	2009	_
Clarke(2009)	0.28	0.09	39.1%	1.32 [1.11, 1.58]	2009	-
Stumpf(2009)	0.89	0.15	14.1%	2.44 [1.81, 3.27]	2009	-
Leffers(2009)	1.02	0.25	5.1%	2.77 [1.70, 4.53]	2009	_
Milne(2009)	0.78	0.2	7.9%	2.18 [1.47, 3.23]	2009	
Total (95% CI)			100.0%	2.05 [1.83, 2.28]		•
Heterogeneity: Chi ² =	66.57, df = 9 (P < 0.0	00001); I² = 86%	1		
Test for overall effect:			•			0.05 0.2 1 5 20 CD3+ or CD8+ HIGH CD3+ or CD8+ LOW

ARTICLE

DOI: 10.1038/s41467-018-03301-0

OPE

Sensitive and frequent identification of high avidity neo-epitope specific CD8⁺ T cells in immunotherapy-naive ovarian cancer

Sara Bobisse¹, Raphael Genolet¹, Annalisa Roberti², Janos L. Tanyi², Julien Racle (1) 13, Brian J. Stevenson³, Christian Iseli³, Alexandra Michel¹, Marie-Aude Le Bitoux¹, Philippe Guillaume¹, Julien Schmidt¹, Valentina Bianchi¹, Denarda Dangaj¹, Craig Fenwick⁴, Laurent Derré (1) 5, Ioannis Xenarios³, Olivier Michielin^{1,3}, Pedro Romero¹, Dimitri S. Monos⁶, Vincent Zoete^{1,3}, David Gfeller^{1,3}, Lana E. Kandalaft^{1,2}, George Coukos¹ & Alexandre Harari (1) 1

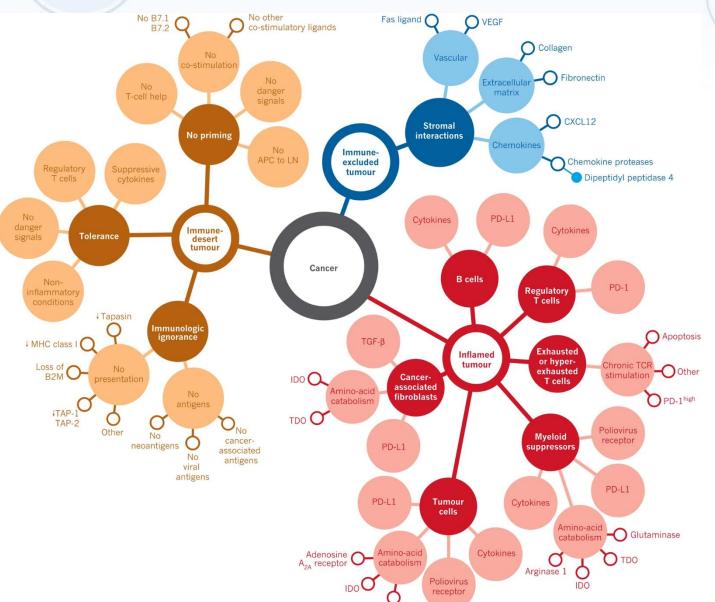
Meta-analysis of intraepithelial TIL impact in ovarian cancer: 10 studies; 1,782 patients

Hwang et al, Gynecol Oncol 2011

Liu et al. Journal for ImmunoTherapy of Cancer https://doi.org/10.1186/s40425-019-0629-6 (2019) 7:156

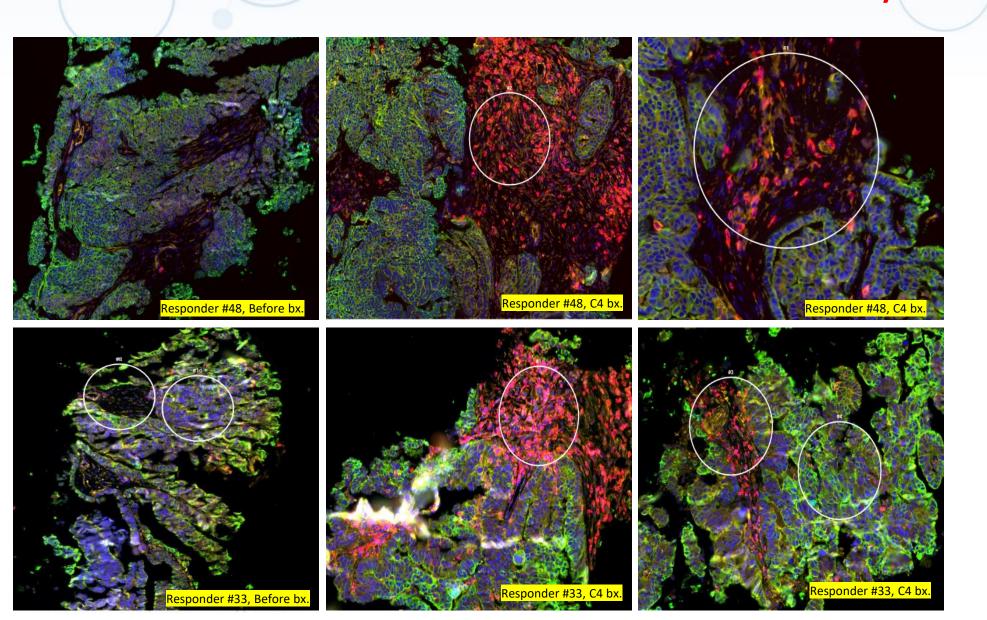
Journal for ImmunoTherapy of Cancer

RESEARCH ARTICLE


Open Access

Efficient identification of neoantigenspecific T-cell responses in advanced human ovarian cancer

Song Liu^{1*†}, Junko Matsuzaki^{2*†}, Lei Wei^{1†}, Takemasa Tsuji^{2†}, Sebastiano Battaglia^{2†}, Qiang Hu¹, Eduardo Cortes¹, Laiping Wong¹, Li Yan¹, Mark Long¹, Anthony Miliotto², Nicholas W. Bateman³, Shashikant B. Lele⁴, Thinle Chodon², Richard C. Koya², Song Yao⁵, Qianqian Zhu¹, Thomas P. Conrads^{3,6,7}, Jianmin Wang¹, George L. Maxwell^{3,6}, Amit A. Lugade² and Kunle Odunsi^{2,4*}



Cancer-immune
phenotypes:
consistent with most
solid tumors

Advances in Cancer Immunotherapy™ CHANGESIN OC TME with PEMBRO + BEV + Oral Cytoxan

Nanostring DSP:

Green: OC cells (PanCK)

Blue: nuclei (DNA)

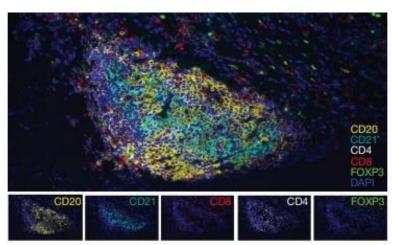
Yellow: vasculature (CD31)

NCT02853318

ZSIROS et al, manuscript in preparation

Article

B cells and tertiary lymphoid structures promote immunotherapy response


https://doi.org/10.1038/s41586-019-1922-8

Received: 5 February 2019

Accepted: 4 December 2019

Published online: 15 January 2020

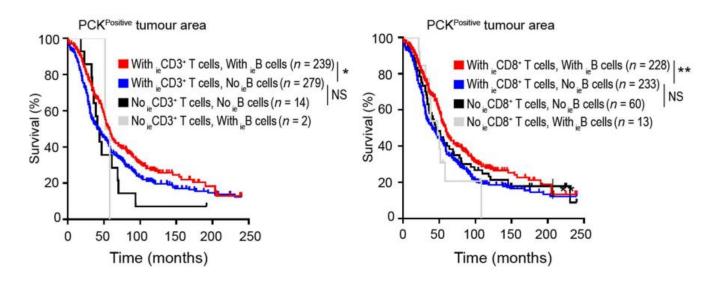
Beth A. Helmink¹³⁴*, Sangeetha M. Reddy²³⁴, Jianjun Gao³²⁴, Shaojun Zhang⁴³⁴, Rafet Basar^{2,34}, Rohit Thakur¹, Keren Yizhak⁶, Moshe Sade-Feldman⁴³, Jorge Blando⁸, Guangchun Han⁴, Vancheswaran Gopalakrishnan¹, Yuanxin Xi⁸, Hao Zhao⁸, Rodabe N. Amaria⁷⁰, Hussein A. Tawbi¹⁰, Alex P. Cogditli¹, Wenbin Liu⁸, Valerie S. LeBleu¹¹, Fernanda G. Kugeratski¹¹, Sapna Patel¹⁰, Michael A. Davies¹⁰, Patrick Hwu¹⁰, Jeffrey E. Lee¹, Jeffrey E. Gershenwald¹, Anthony Lucci¹, Reetakshi Arora⁴, Scott Woodman¹⁰, Emily Z. Keung¹, Pierre-Olivier Gaudreau¹, Alexandre Reuben¹², Christine N. Spencer¹³, Elizabeth M. Burton¹, Lauren E. Haydu¹, Alexander J. Lazar^{4,4,5}, Roberta Zapassodi¹⁶, Courtney W. Hudgens¹⁴, Deborah A. Ledesma¹⁴, SuFey Ong¹⁷, Michael Bailey¹⁷, Sarah Warren¹⁷, Disha Rao¹⁸, Oscar Krijgsman¹⁸, Elisa A. Rozeman¹⁵, Daniel Peeper¹⁶, Christian U. Blank¹⁸, Ton N. Schumacher¹⁸, Lisa H. Butterfield¹⁹, Monika A. Zelazowska²⁰, Kevin M. McBride²⁰, Raghu Kalluri¹¹, James Allison⁸, Florent Petitprez^{21,22,23}, Wolf Herman Fridman^{21,22}, Catherine Sautès-Fridman^{21,22}, Nir Hacohen^{6,3}, Katayoun Rezvani^{2,32}, Padmanee Sharma^{3,8,25}, Michael T. Tetzlaff^{14,15,25}, Linghua Wang^{4,25} & Jennifer A. Wargo^{1,4,25}*

#LearnACI

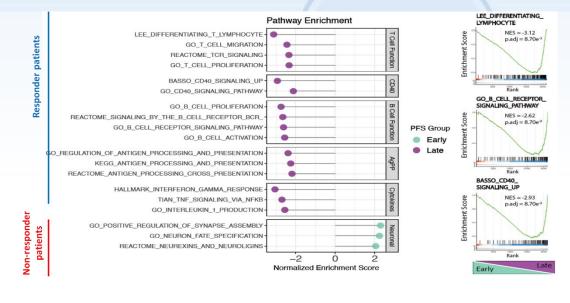
Article

IgA transcytosis and antigen recognition govern ovarian cancer immunity

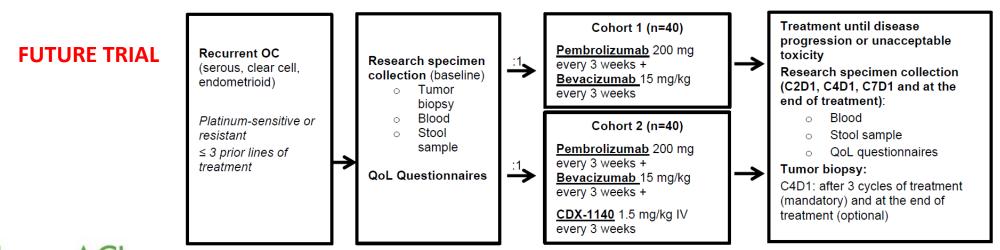
https://doi.org/10.1038/s41586-020-03144-0


Received: 22 September 2019

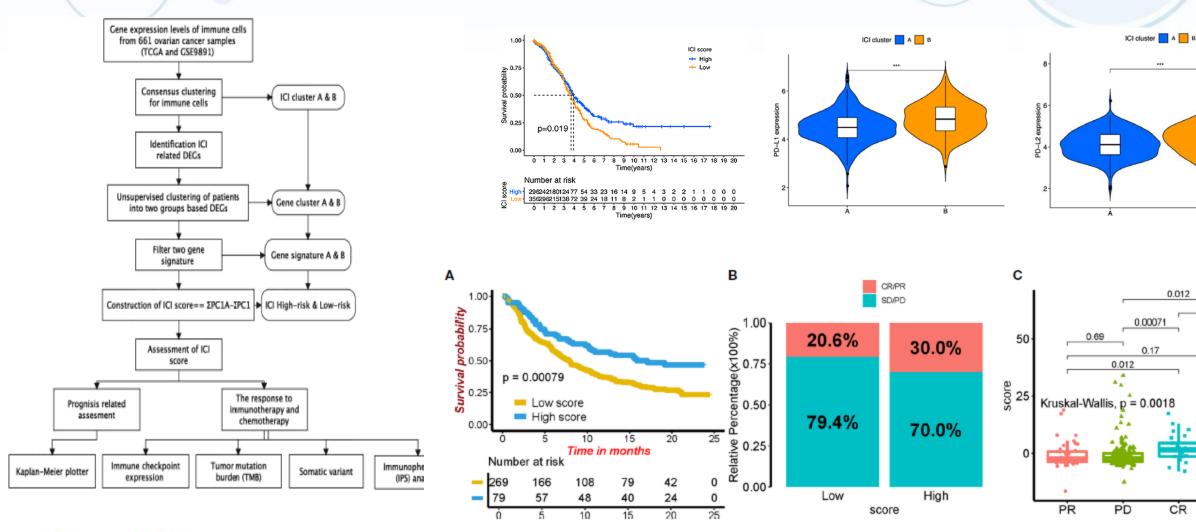
Accepted: 17 December 2020


Published online: 3 February 2021

Open access


Subir Biswas¹, Gunjan Mandal¹, Kyle K. Payne¹, Carmen M. Anadon¹, Chandler D. Gatenbee², Ricardo A. Chaurio¹, Tara Lee Costich¹, Carlos Moran³, Carly M. Harro¹, Kristen E. Rigolizzo¹, Jessica A. Mine¹, Jimena Trillo-Tinoco¹, Naoko Sasamoto⁴, Kathryn L. Terry⁴, Douglas Marchion⁴, Andrea Buras⁵, Robert M. Wenham⁵, Xiaoqing Yu⁶, Mary K. Townsend७, Shelley S. Tworoger², Paulo C. Rodriguez¹, Alexander R. Anderson² & Jose R. Conejo-Garcia¹ Carlos Carl

0.725***	0.87***	0.27	CD3E	0.8. 	Marker CD19	CellType b-cell	Estimate 0.72	p value 0.03		
0.712***	0.807***	0.301*	0.201*	CDOV	0.301* CD8A	0.6	CD20	b-cell	0.76	0.03
0.7 12	0.007		CDOA	0.5	CD3D CD3E	t-cell t-cell	0.68 0.65	0.01 0.01		
	0.751***	0.426** C [CD4	0.4	CD3G	t-cell	0.68	0.04		
0.592***				0.3	CD4 CD8A	t-cell t-cell	0.54 0.60	0.01 0.03		
<u>Ω</u>	<u>Ω</u>	ဂ္		_	CD8B	t-cell	0.68	0.03		
CD19	CD20	CD13			Correlation with PFS					


Correlation with PFS

NCT02853318

Immune Cell Infiltration Score to predict prognosis and response to ICB?

Liu J. et al., Frontiers in Immunology, 2021

0.012

ĊR

SD

PD-L1 staining conundrum

COMBINED POSITIVE SCORE - CPS Definition

This scoring method evaluates the number of PD∃ □1–staining cells (tumor cells, lymphocytes, macrophages) relative to all viable tumor cells. CPS Calculation

Although the result of the CPS calculation can exceed 100, the maximum score is defined as CPS 100.

A minimum of 100 viable tumor cells in the PD-111-stained slide is required for the specimen to be considered adequate for PD-111111 evaluation.

TUMOR PROPORTION SCORE - TPS Definition

This scoring method evaluates the percentage of viable tumor cells showing partial or complete membrane staining at any intensity.

TPS Calculation

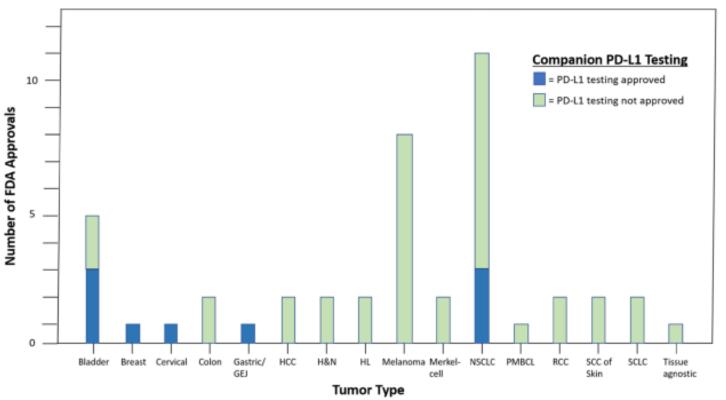
PD±1 expression level in advanced NSCLC is determined by the TPS, which is reported as a percentage on a scale of 0% to 100%.

A minimum of 100 viable tumor cells in the PD±11-stained slide is required for the specimen to be considered adequate for PD±11 evaluation.

Companion PD-L1 testing

Different cut-offs

TPS > 1%: Advanced Non⊞small Cell Lung Cancer (NSCLC) uses, Ovarian cancer MISP studies

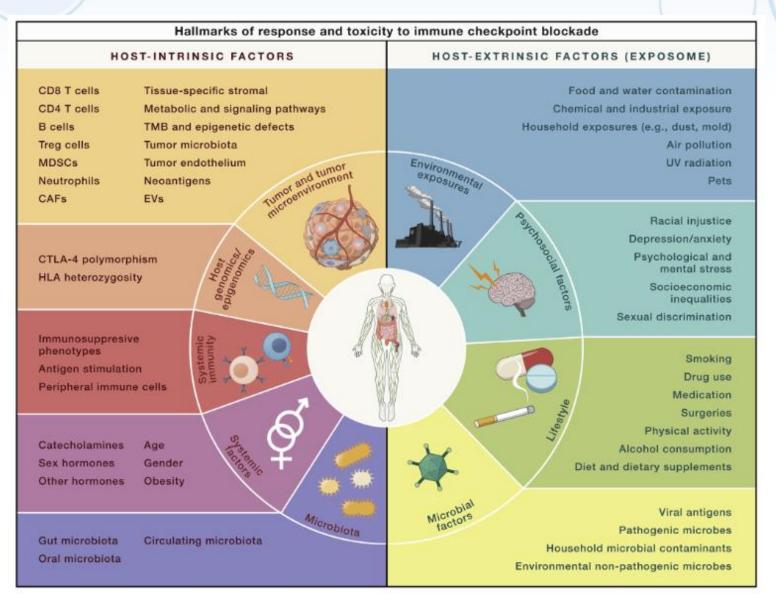

CPS>1%: Advanced Cervical Cancer

Metastatic or Unresectable, Recurrent

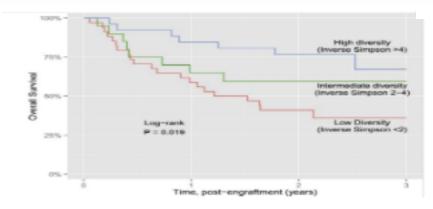
Head and Neck Squamous Cell Carcinoma

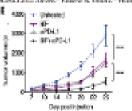
(HNSCC)

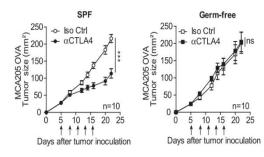
CPS> 10%: Advanced Esophageal or GEJ Carcinoma Advanced TNBC or High-Risk Early-Stage Triple-Negative Breast Cancer (TNBC)



Ovarian cancer: KN-100, Javelin studies, MISP studies – PD-L1 expression is NOT predictive biomarker to ICB response

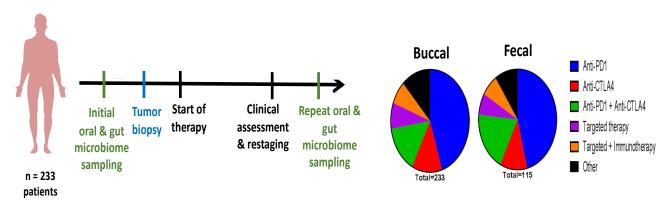

HOST FACTORS


<u>Diversity and composition</u> of the gut microbiome are associated with differential outcomes to stem cell transplant (in patients) and immune checkpoint blockade (in mice)


Taur Pamer Blood 2014

Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-LI efficacy

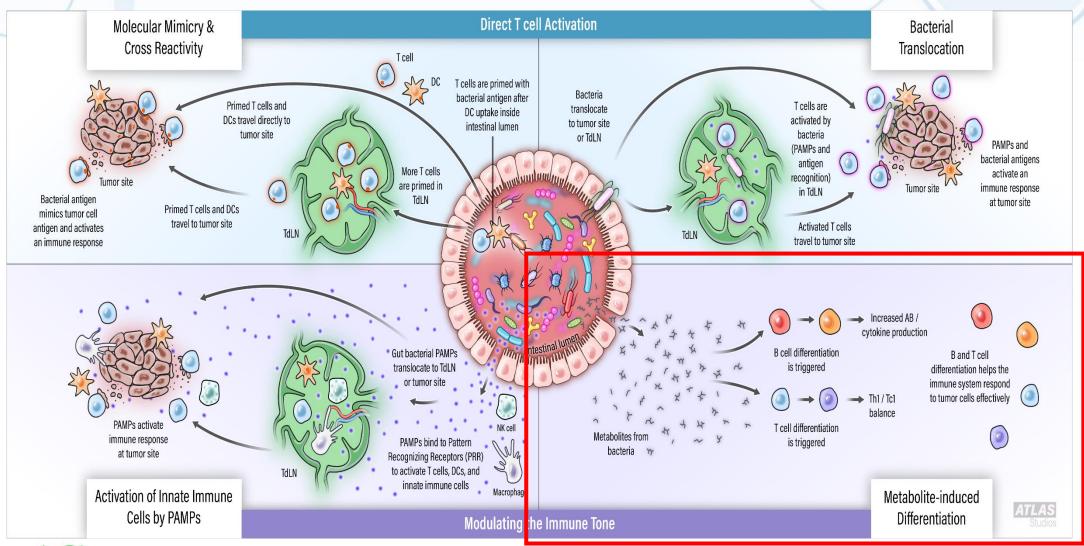
Apuloi Blum," Letinia Corraba," Pathaniel Habert," Javon B. Williams." Letino Agenta mechanis," oscinary M. norsey, "monoc ve. norsemma," year man test." Tama Jakot, "Maria Labo Alexee," Fances B. Chare, "Thomas F. Gajeschill";


Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota

Sivan...Gajewski Science 2015, Vetizou...Zitvogel Science 2015

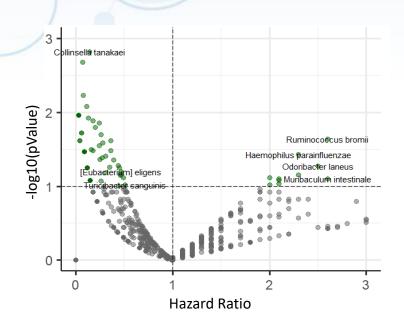
Early studies supported a role for gut microbes in shaping response to ICB

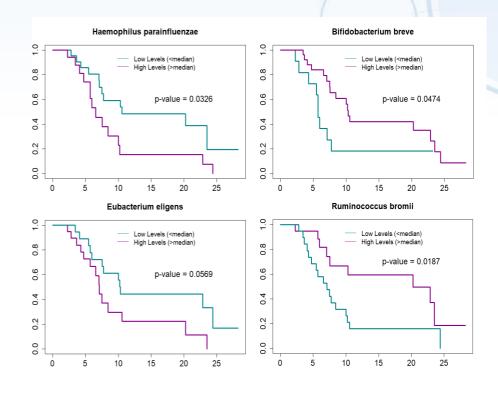
<u>Diversity and composition</u> of the gut microbiome are associated with differential outcomes to immune checkpoint blockade in patients with melanoma

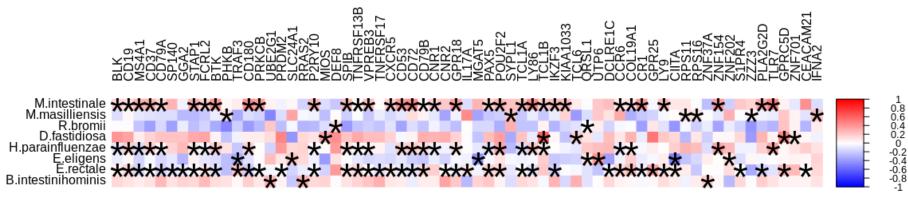


Responders to anti-PD-1 had a higher diversity of gut bacteria associated with prolonged PFS (along with additional compositional differences)

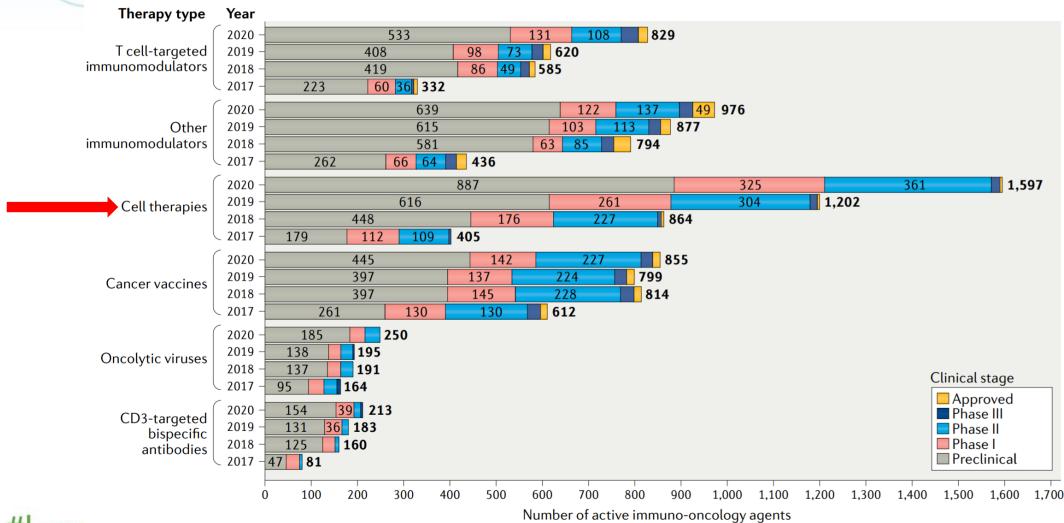
Routy...Zitvogel et al, Science 2018


Bacterial metabolites as an important modulators of immune system





Stool microbiome analysis from NCT02853318



The Future: IO Drug Development

Acknowledgments

Mentors:

George Coukos

Lana Kandalaft

Kunle Odunsi

Jennifer Wargo

Mark Morgan

Robert Burger

Gynecologic Oncology Team

Shashikant Lele

Peter Frederick

Katie Mager

Melissa Moffitt

Lise Hernandez

Translational Research Team:

Shanmuga Reddy Chilakapati

Spencer Rosario

Mark Long

Song Liu

Bob McGray

Eduardo Cortes Gomez

Susan McCann

Prashant Singh

Warren Davis

Gyorgy Paragh

Brahm Segal

Biostatisticians:

Kris Attwood

Katy Wang

Patients and their families

