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Background

Macrophage migration inhibitory factor (MIF), a 12.5 kDa protein, was one of the
first cytokines described, more than 40 years ago. Ability to inhibit random
macrophage migration.

MIF is secreted by T cells, macrophages, eosinophils and other tissues including the
anterior pituitary gland (in response to stress). Multi-functional protein with several
described activities: activation of MAPK signaling, up-regulation of TLR4,
promotes expression or pro-inflammatory mediators, counterregulation of
glucocorticoids, inhibition of apoptosis, leukocyte recruitment.

Classically defined as a pro-inflammatory cytokine. However, there are some reports
suggesting that MIF can be immune suppressive (reported to inhibit CTL activity and
prevent NK lysis). It has been suggested that activity (activation vs. suppression)
may be related to protein levels or post-translational modifications of the protein.

Recently, it has been shown that MIF expression is increased in several malignancies
including neuroblastoma, where it appears to function in part as a pro-tumorigenic

factor (inactivates pS3; sustains ERK1 and ERK?2 activation; induces secretion of IL-
8 and VEGF).

To our surprise, we found that mouse tumor-derived MIF was able to strongly inhibit
T cell activation in vitro (in part, through IFN-y; Cytokine, 33:188, 2000).




Experimental Hypothesis

Based on our previous results showing that tumor-derived
MIF inhibited T cell activation/proliferation in vitro, we
hypothesized that inhibiting MIF production by tumor cells
would increase T cell anti-tumor immunity in vivo.

Strategy:

We generated mouse neuroblastoma cells (AGN2a) that had a decreased
ability to produce MIF by transducing the cells with short hairpin RNAi1
lentiviral constructs.

The MIF knockdown (MIFKD) cells were compared to parental and
control AGNZ2a cells with regards to induction of T cell immunity in
Vivo.




MIF Expression in MIFKD-AGNZ2a Cells
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Growth of MIFKD-AGNZ2a Cells In Vitro

o
\'

] Wild-type AGN2a
B Control AGN2a
B MIFKD-AGN2a

© o o o ©
N W~ O O

oo
o
—
X
<
-
o
Q0
=
=)
Z
Jo,
@)

o
o

-10% cells seeded in culture and cell counts done at the indicated times




Growth of MIFKD-AGNZ2a Cells In Vivo
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-normal (immune competent) A/J mice were inoculated subcutaneously with the indicated numbers of tumor cells

-mice were considered moribund and euthanized when tumors exceeded 250 mm? in size

Increased rejection of the MIFKD tumor cells could be due to decreased
growth rate (observed in vitro) or due to increased immune reactivity.




Growth of MIFKD-AGNZ2a Cells in T-depleted Mice
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-to deplete T cells in vivo, A/J mice were treated 1.p. with 500 ug of anti-Thy1.2 mAb two days before tumor
inoculation and every four days thereafter until the mice died from tumor progression or until day 60 after inoculation

Data indicates that MIF inhibits anti-tumor T cell reactivity in vivo.




Can MIFKD-AGN2a Cells Provide Better Anti-Tumor Immunity when

Used as a Cell-Based Vaccine?

Experimental Design
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The MIFKD AGN?2a cells
were able to serve as a
more potent cell-based
tumor vaccine.




How Do MIFKD-AGNZ2a Influence Immune Cells at the Site of Vaccination?
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MIF appears to influence the
numbers of T cells and other
immune cells infiltrating the site
of tumor inoculation.
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Do Tumor-Infiltrating T Cells Show Signs of Increased Apoptosis due to MIF?

Experimental
Design
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Tumor-derived MIF may
be inhibiting T cells in part
by inducing apoptosis.
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Conclusions

While tumor-derived MIF may function, in part, as an autocrine growth
factor for mouse neuroblastoma, our results indicate that tumor-derived MIF
also 1nhibits anti-tumor T cell reactivity in vivo.

When mouse neuroblastoma cells were administered as a vaccine, tumor-
derived MIF inhibited the accumulation of tumor-reactive T cells and several
other potential immune effector cells at the site of vaccination.

Tumor-derived MIF may inhibit anti-tumor T cell immunity in vivo by
inducing apoptotic cell death. Our previous in vitro data suggests that this
occurs 1n part through an IFN-y pathway, but the specific mechanism(s) need
to be investigated further.

Summary: These results suggest that the MIF produced by this murine
neuroblastoma contributes to immune evasion.
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Molecular Signalling Pathways Impacted by MIF
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