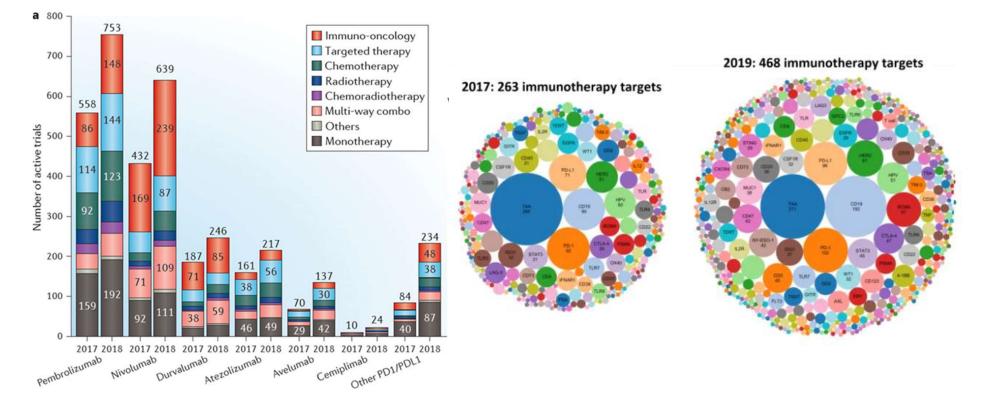
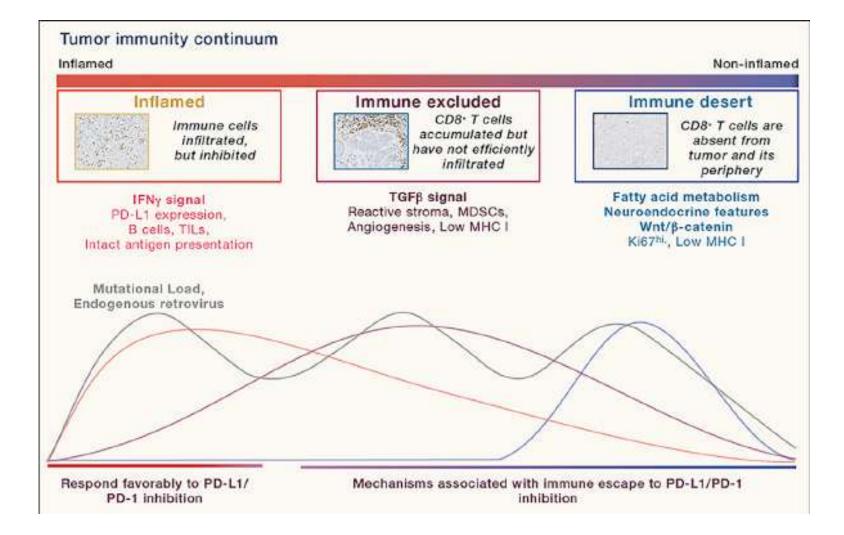

What's Next for Cancer Immunotherapy

Jaspreet Grewal, MD, PhD, MPH

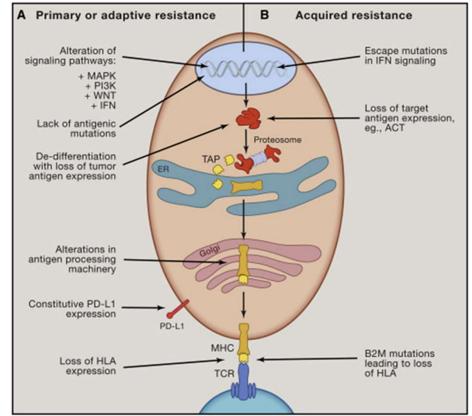
Financial Disclosures & COI


- Speakers' bureau: BMS
- **Consulting Fees (Advisory board):** Merck and QED Therapeutics
- Contracted Research (through institution): F. Hoffmann-LaRoche Ltd., Daiichi Sankyo ٠ Company, Limited, NovoCure, Pfizer, Regeneron Pharmaceuticals, Inc., Boehringer Ingelheim, Galera Therapeutics, Inc., Incyte Corporation, Kartos Therapeutics, Inc., Astellas Pharma US, Inc., FibroGen, Inc., AADI Bioscience, Inc., Regeneron Pharmaceuticals, Inc., Merck Sharp & Dohme Corp., NuCana, plc., Bristol-Myers Squibb (BMS), Basilea Pharmaceutica International Ltd., Epizyme, Inc., Kura Oncology, Inc., Bayer Healthcare Pharmaceuticals, NRG Oncology, Bluestar Genomics, Alkermes, Inc., AbbVie, Ultimovacs, MacroGenics, Inc., Boston Biomedical, Inc., BeiGene, Ltd, Bavarian Nordic A/S, Immunicum AB, Apellis Pharmaceuticals, Inc., NRG Oncology, Exact Sciences Corporation, Eli Lilly, Rainier Therapeutics, Inc., Oragenics Inc., AstraZeneca, Boehringer Ingelheim, AbbVie, MedImmune, LLC, GlaxoSmithKline, Nektar Therapeutics, PDS Biotechnology Corporation, Tizona Therapeutics, Inc., Genmab, Exicure, Inc., Amgen, Taiho Oncology, Inc., BeiGene, Ltd, Hutchison MediPharma Limited, Alpine Immune Sciences, Inc., Debiopharm International S.A, Shanghai Haihe Pharmaceutical Co., Ltd, Tizona Therapeutics, Inc., IntralmmuSG Pte Ltd (IISG), Tizona Therapeutics, Inc., EMD Serono

Stimulatory and Inhibitory Factors in the Cancer-Immunity Cycle


(TGFB, IL-1, IL-6, IL-10, IL-12, IL-18

Expanding Landscape in Immuno-Oncology


Cancer Immunity and Resistance

The Tumor Immunity Continuum

Immune Resistance Mechanisms in Cancer Immunotherapy

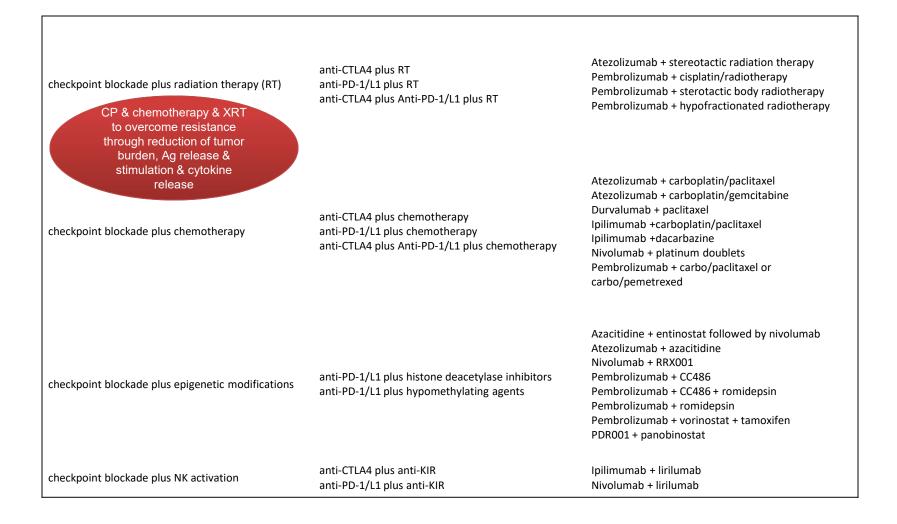
- Primary resistance
 - cancer does not respond to an immunotherapy strategy
 - mechanism of lack of response to immunotherapy may include adaptive immune resistance
- Adaptive immune resistance
 - cancer is recognized by the immune system but it protects itself by adapting to the immune attack
 - could clinically manifest as primary resistance, mixed responses or acquired resistance
- Acquired resistance
 - cancer initially responds to immunotherapy but after a period of time it relapses and progresses

Mechanisms of Resistance to Immunotherapy

	Mechanism	Examples		
	absence of antigenic proteins	low mutational burden lack of viral antigens lack of cancer-testis antigens overlapping surface proteins		
Tumor cell intrinsic	absence of antigen presentation	deletion in TAP deletion in B2M silenced HLA		
	genetic T cell exclusion	MAPK oncogenic signaling stabilized b-catenin mesenchymal transcriptome oncogenic PD-L1 expression		
	insensibility to T cells	mutations in interferon gamma pathway signaling		
Γumor cell extrinsic	absence of T cells	lack of T cells with tumor antigen-specific TCRs		
	inhibitory immune checkpoints	VISTA, LAG-3, TIM-3		
	immunosuppressive cells	TAMs, Tregs		

Combination Strategies

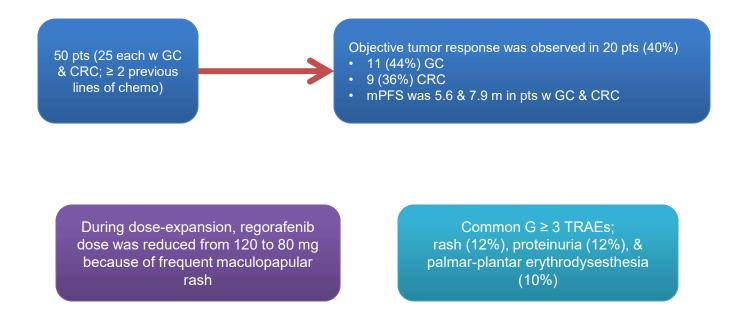
Combination Strategies to Overcome Resistance to Cancer Immunotherapy


			CP &		
Broad Approach	Specific Approach	Examples in Clinical Testing	metabolomics		Atezolizumab + GDC0919 Ipilimumab + epacadostat
		Durvalumab + tremelimumab		anti-CTLA-4 plus IDO inhibitors	Ipilimumab + indoximid
	anti-PD-1/L1 plus anti-CTLA4	Nivolumab + ipilimumab	checkpoint blockade plus	anti-PD-1/L1 plus IDO inhibitors	Nivolumab + BMS986205
		Pembrolizumab + ipilimumab	metabolic modulators		Pembrolizumab+ epacadostat
	anti-PD-1 plus anti-PD-L1	MEDI0680 + durvalumab			Atezolizumab + CPI-444
		PDR001 + FAZ053		anti-PD-1/L1 plus A2AR	Durvalumab + MEDI9447
combination checkpoint blockade		Nivolumab + TSR022		inhibitors or anti-CD73	PDR001+ PBF509
	anti-PD-1/L1 plus anti-TIM 3	PDR001 + MBG453			
				anti-PD-1/L1 plus TGFβ	Nivolumab + LY2157299
		Nivolumab + BMS 986016		inhibitors	PDR001 + NIS793
	anti-PD-1/L1 plus anti-LAG 3	PDR001 + LAG525		anti-PD-1/L1 plus CXCR4	Nivolumab + ulocuplumab
CP blocking	anti-PD-1/L1 plus anti-LAG 3	Pembrolizumab + IMP321		inhibitors	Durvalumab + LY2510924
combinations		REGN2810 + REGN3767			
Companienci		Avelumab + utomilumab	CP & immune	anti-PD-1/L1 plus CCR4	Nivolumab + mogamulizumab
	anti-PD-1/L1 plus anti-	Nivolumab + urelumab		inhibitors	
	41BB/CD137	Pembrolizumab + utomilumab	modulators		Nivolumab + varlilumab
				anti-PD-1/L1 plus anti-CD27	Atezolizumab + varlilumab
		Atezolimumab + MOXR0916 ±	checkpoint blockade plus other	anti-PD-1/L1 plus CD122-biased	Nivolumab + NKTR-214
	anti-CTLA4 plus anti-OX40	bevacizumab Avelumab + PF-04518600	immune modulators	cytokine	
	anti-PD-1/L1 plus anti-OX40	Durvalumab + MEDI0562		anti-PD-1/L1 plus yeast-derived	
	anti-CTLA4 plus Anti-PD-1/L1 plus	Pembrolizumab + GSK3174998		soluble β-glucan	Pembrolizumab + Imprime PGG
checkpoint blockade plus	anti-OX40	Tremelimumab + durvalumab +			
immune-stimulatory agents	anti-41BB/CD137 plus anti-OX40	MEDI6469		anti-PD-1/L1 plus anti- TRAIL-	Nivolumab + DS-8273a
initiate stinuatory agents	· ·	Tremelimumab + MEDI0562		DR5	
		Utomilumab + PF-04518600		anti-PD-1/L1 plus glutaminase	
				inhibitor	Nivolumab + CB839
CP & agonist	anti-CTLA4 plus anti-CD40	Atezolimumab + RO7009789			
Ab	anti-PD-1/L1 plus anti-CD40	Tremelimumab + CP870893		anti-PD-1/L1 plus IAP inhibitor	PDR001 + LCL161
			CP &		
	anti-PD-1/L1 plus anti-GITR	Nivolumab + BMS986156			
		PDR001 + GWN323	TAMs/MDSCs		Durvalumab + Pexidartinib
	anti-PD-1/L1 plus anti-ICOS	Nivolumab + JTX-2011		anti CTI A 4 nius CCC1D inhibitare	(PLX3397)
	and F D-1/L1 plus dilli-ICOS		checkpoint blockade plus	anti-CTLA4 plus CSF1R inhibitors anti-PD-1/L1 plus CSF1R	Durvalumab + LY3022855 Nivolumab + FPA008
			macrophage inhibitors	inhibitors	Pembrolizumab + Pexidartinib
				millionolo	PDR001 + BLZ945
					Tremelimumab + LY3022855

Sharma P; Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy; Cell 168, February 9, 2017

Combination Strategies to Overcome Resistance to Cancer Immunotherapy

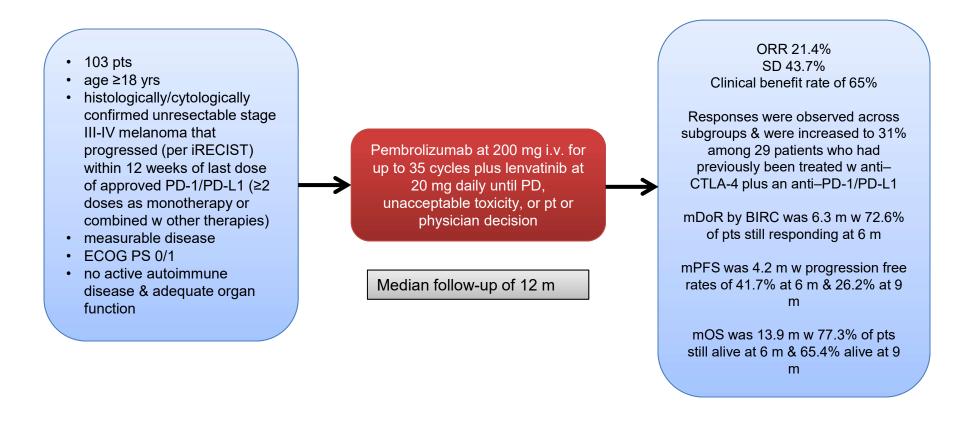
CP & in-vivo Ag release using oncolytic viruses checkpoint blockade plus injectable therapies	anti-CTLA-4 plus oncolytic viruses anti-PD-1/L1 plus oncolytic viruses	Ipilimumab + Talimogene Laherparepvec Nivolumab + Talimogene Laherparepvec Pembrolizumab + DNX2401 Pembrolizumab + Talimogene Laherparepvec Ipilimumab + MGN1703	CP & targeted agents to modulate TME	anti-CTLA4 plus BRAF+MEK inhibitors anti-CTLA4 plus VEGF inhibitors anti-PD-1/L1 plus BRAF+MEK inhibitors anti-PD-1/L1 plus EGFR inhibitors anti-PD-1/L1 plus VEGF inhibitors anti-PD-1/L1 plus PI3K delta inhibitor	Atezolizumab + bevacizumab versus sunitinib Atezolizumab + trametinib Atezolizumab + vemurafenib ± cobimetinib Durvalumab + ensartinib (ALK inhibitor) Durvalumab + gefitinib Durvalumab + gefitinib Durvalumab + trametinib ± dabrafenib Ipilimumab + bevacizumab Ipilimumab + dabrafenib ± trametinib Ipilimumab + vemurafenib Nivolumab + sunitinib or pazopanib Nivolumab + trametinib ± dabrafenib PDR001 + sorafenib Pembrolizumab + dabrafenib + trametinib Pembrolizumab + lenalidomide Pembrolizumab + nintedarnib Pidilizumab + lenalidomide
CP & stimulation of innate immune system / NK cells	anti-CTLA4 plus TLR agonists anti-PD-1/L1 plus TLR agonists	Pembrolizumab + CMP001 Pembrolizumab + SD101 Tremelimumab + PF-3512676 Durvalumab + ADXS11-001 Durvalumab + TPIV200/huFR-1 Ipilimumab + GVAX Nivolumab + GVAX + CRS207			
	anti-CTLA4 plus ACT anti-PD-1/L1 plus ACT anti-PD-1/L1 plus anti-CD137 plus ACT	Atezolimuamb + KTE-C19 Ipilimumab + NYESO TCR ACT Nivolumab + NYESO TCR ACT Nivolumab + vrelumab + TIL ACT Pembrolizumab + TIL ACT Ipilimumab + modified CD8 T cell ACT Pembrolizumab + modified CD8 T cell ACT			
checkpoint blockade plus adoptive cell transfer (ACT) CP & ACT					anti-PD-1/L1 plus PARP inhibitors
				anti-PD-1/L1 plus mTOR inhibitor	PDR001 + everolimus
				anti-PD-1/L1 plus pan RAF inhibitor	PDR001 + LXH254
				anti-PD-1/L1 plus glutaminase inhibitor	Nivolumab + CB839


Combination Strategies to Overcome Resistance to Cancer Immunotherapy

Clinical Data on Combination Strategies

Regorafenib Plus Nivolumab in Patients With Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial

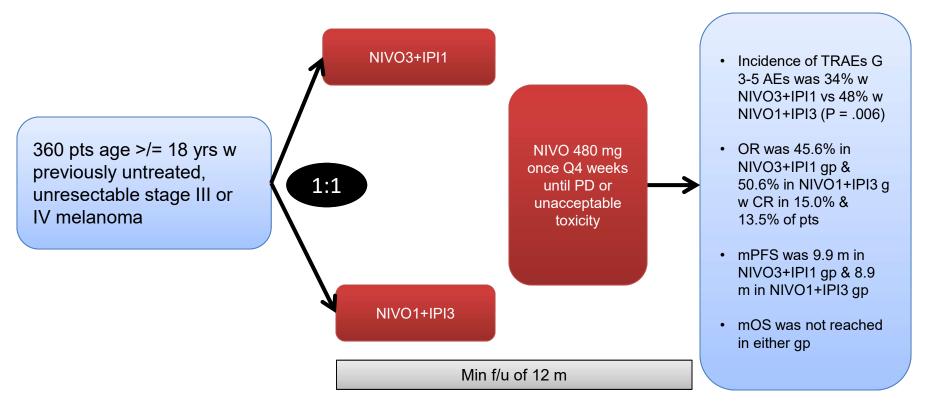
Regorafenib of 80-160 mg was administered once daily for 21 days on/7 days off with nivolumab 3 mg/kg every 2 weeks.



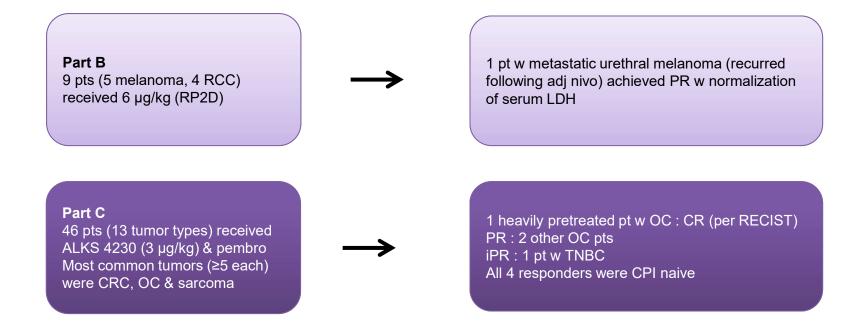
Fukuoka S, et alRegorafenib Plus Nivolumab in Patients With Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, EPOC1603).

J Clin Oncol. 2020 Jun 20;38(18):2053-2061. doi: 10.1200/JCO.19.03296. Epub 2020 Apr 28. PMID: 32343640.

Lenvatinib (len) plus pembrolizumab (pembro) in patients (pts) with advanced melanoma previously exposed to anti– PD-1/PD-L1 agents: Phase 2 LEAP-004 study

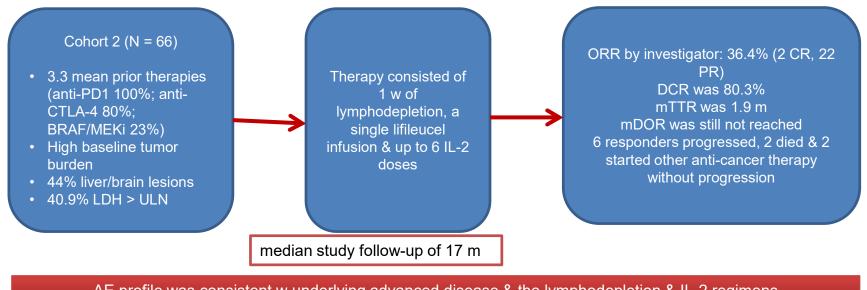

- Len potent inhibitor of VEGF receptors 1-3, FGF receptors 1-4, PDGF receptor α, RET, & KIT
- Phase 1b/2 KEYNOTE-146 trial: Len plus pembro showed anti-tumor activity & was well-tolerated (24-wk ORR, 47.6%; TRAE: gr 3/4, 67%; gr 5, 0%) in pts w advanced melanoma previously treated w 0-2 therapies

Arance Fernandez AM, O'Day SJ, de la Cruz Merino L, et al: Lenvatinib plus pembrolizumab for advanced melanoma that progressed on a PD-1 or PD-L1 inhibitor: Initial results of LEAP-004. ESMO Virtual Congress 2020: Abstract LBA44


Evaluation of Two Dosing Regimens for Nivolumab in Combination With Ipilimumab in Patients With Advanced Melanoma: Results From the Phase IIIb/IV CheckMate 511 Trial

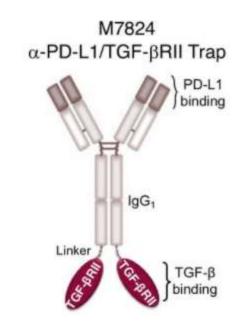
Ph IIIb/IV study to determine if nivolumab 3 mg/kg plus ipilimumab 1 mg/kg (NIVO3+IPI1) improves the safety profile of the combination

ALKS 4230 monotherapy and in combination with pembrolizumab (pembro) in patients (pts) with refractory solid tumours (ARTISTRY-1)


- ALKS 4230 is a fusion protein of circularly permuted IL-2 & IL-2Rα designed to selectively bind to the intermediateaffinity IL-2 receptor
- · Being investigated as monotherapy & in combination with pembro in pts with solid tumors
- Ongoing 3-part phase I/II study. In Parts A (dose escalation) and B (expansion)
- ALKS 4230 is administered as IV monotherapy on days 1-5 of 14- or 21-day cycles
- In Part C (combination therapy), ALKS 4230 is administered via the same 5-day regimen q21d with pembro on day 1

ATC with tumor-infiltrating lymphocytes

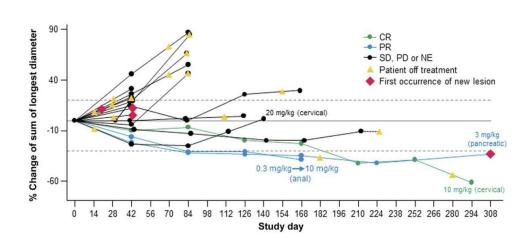
Global Phase 2 open-label, multicenter study of efficacy & safety of lifileucel (cryopreserved autologous TIL therapy) in pts w unresectable metastatic melanoma who have progressed on CPIs & BRAF/MEKi, if BRAFv600 m

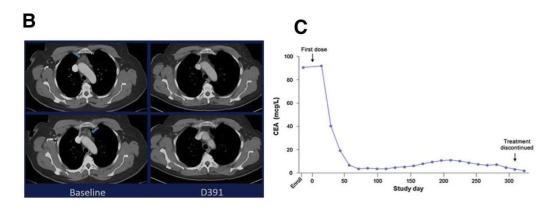

Tumors were resected at local institutions, processed in central GMP facilities for TIL production, manufactured, cryopreserved & shipped back to sites in a 22-day process

AE profile was consistent w underlying advanced disease & the lymphodepletion & IL-2 regimens

Dual targeting of TGF- β and PD-L1 via a bifunctional anti-PD-L1/TGF- β RII agent

- Bintrafusp alfa consists of an IgG1 targeting PD-L1 moiety fused via peptide linkers to ECD of 2 TGF-β receptor II molecules designed to 'trap' TGF-β in the TME
- Able to bring the TGF- β trap to the TME via its anti-PD-L1 component, thus simultaneously attacking both immunosuppressive PD-L1 & TGF- β entities
- Preclinical studies have shown bintrafusp alfa capable of ;
 - preventing or reverting TGF-β-induced EMT in human carcinoma cells – thus rendering human tumor cells more susceptible to immune-mediated attack as well as to several chemotherapeutic agents
 - 2. altering the phenotype of NK & T cells, thus enhancing their cytolytic ability against tumor cells
 - 3. mediating enhanced lysis of human tumor cells via ADCC
 - 4. reducing the suppressive activity of Treg cells
 - 5. mediating antitumor activity in numerous preclinical models
 - 6. enhancing antitumor activity in combination with XRT, chemotherapy and several other immunotherapeutic agents




Dual targeting of TGF- β and PD-L1 via a bifunctional anti-PD-L1/TGF- β RII agent

Α

Dose-escalation portion of a ph I, open-label clinical trial of bintrafusp alfa (MSB0011359C) has been completed

- 19 heavily pretreated pts w metastatic or locally advanced solid tumors w/o prior CPI - pancreatic, cervix uteri, colorectal, anal & adenoid cystic carcinoma, among others
- Bintrafusp alfa showed a safety profile similar to other anti-PD-1/PD-L1 monotherapies w/ the addition of skin-related AEs characteristic of TGFβ blockade
- Evidence of clinical activity was seen;
 - 1 case (cervical cancer) demonstrated a dCR
 - 2 pts (pancreatic cancer, anal cancer) had dPR
 - 2 cases (pancreatic cancer, carcinoid) experienced prolonged SD

Lind H, Gameiro SR, Jochems C, et alDual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advancesJournal for ImmunoTherapy of Cancer 2020;8:e000433. doi: 10.1136/jitc-2019-000433

Anti-TIGIT (T-cell immunoreceptor with immunoglobulin and ITIM domains)

- TIGIT is expressed on multiple immune cell types;
 - Expression of TIGIT on Tregs, particularly tumor-infiltrating Tregs, enhances their immunosuppressive function, with indirect effects that include inhibition of proinflammatory cytokine production
 - Also directly suppresses the antitumor effector function of CD8 T cells
 - Immune activation of TIGIT-expressing CTLs & NK cells is suppressed when TIGIT interacts w 1 of its ligands, CD155 (PVR) or CD112 (PVRL2; Nectin 2) expressed on tumor cells

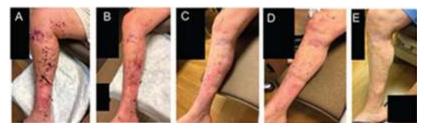
Phase 1a/1b GO30103 trial (NCT02794571) demonstrated efficacy of atezolizumab plus the anti-TIGIT antibody tiragolumab in patients with PD-L1–pos NSCLC

The study enrolled 73 pts;

- Phase 1a included 24 pts, of whom 67% experienced TRAEs
- Phase 1b included 49 pts, w/ 59% experiencing TRAEs; anemia (31%)
- 3 tumor responses were observed in pts treated in phase 1b
- All had PD-L1–pos tumors, included 2 pts w NSCLC, including 1 CR & 1 pt w/ H&N SCC w/ PR

Expansion cohorts of immunotherapy-naïve pts w/ PD-L1-pos

- 14-pt mNSCLC expansion cohort had ORR of 46%, including 2 CRs & 4 PRs
- DCR was 85%, and the safety profile was similar to that seen in the dose-escalation cohort


OX 40 Agonist Monoclonal Antibody

Safety and Clinical Activity of MEDI0562, a Humanized OX40 Agonist Monoclonal Antibody, in Adult Patients with Advanced Solid Tumors

- Ph I, multicenter, open-label, single-arm, dose-escalation (3+3 design) study, patients received 0.03, 0.1, 0.3, 1.0, 3.0, or 10 mg/kg MEDI0562 through intravenous infusion every 2 weeks, until confirmed PD or unacceptable toxicity
 - \circ 55 patients received ≥1 dose of MEDI0562
 - Most common tumor type was SCC H&N (47%).
 - Median duration of treatment was 10 weeks (range, 2–48 weeks).
 - TRAEs occurred in 67% of patients, most commonly fatigue (31%) & IRRS (14%)
 - o G 3 TRAEs occurred in 14% of pts with no apparent dose relationship; no TRAEs resulted in death
 - $_{\odot}\,$ 2 pts had IR PR per protocol & 44% had SD
 - Increased Ki67+ CD4+ & CD8+ memory T-cell proliferation in the periphery & decreased intratumoral OX40+
 FOXP3+ cells

Cancer Vaccines - PVSRIPO

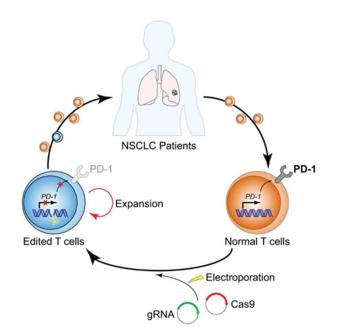
- Ph 1 open-label trial (clinicaltrials.gov NCT03712358) enrolled 12 pts w unresectable &/ metastatic melanoma, who failed ≥1 anti-PD-1-based regimen; pts w BRAF⁶⁰⁰ failed ≥1 BRAF-targeted therapy
- PVSRIPO: novel immunotherapy consisting of non-neurovirulent rhinovirus: poliovirus chimera that activates innate & adaptive immunity to facilitate targeted anti-tumor immune response
 - o 4 (33%) met criteria for ORR per iRRC, including 4/6 (67%) who received 3 injs
 - Path CR : 2 of 4 (50%) pts w in-transit disease evidence of abscopal response
 - Following the study's completion, majority of pts received additional ICI-based therapy & 6 / 12 pts (50%) remained progression free at data cutoff
- IT PVSRIPO was well tolerated (all adverse events grade 1 or 2)
- No SAEs or DLTs
- No evidence of viral spread from IT inoculation site; pre-existing anti-poliovirus immunity & CD155 targeting are the likely mechanisms responsible for restricting viral spread & systemic IR AEs
- LUMINOS-102 Ph 2 study evaluating the safety & efficacy of PVSRIPO w & w/o anti-PD-1 therapy in advanced anti-PD-1 refractory melanoma population

Georgia M. Beasle et al; A Phase I Trial of Intratumoral PVSRIPO in Patients with Unresectable Treatment Refractory Melanoma; SITC 2020

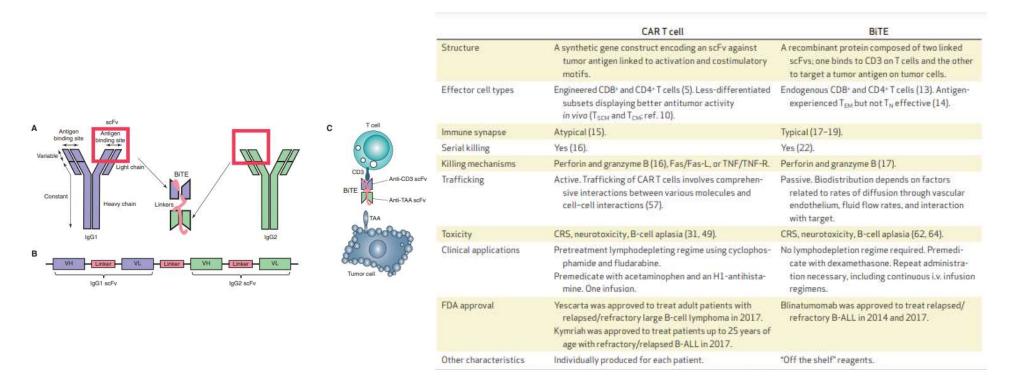
Cancer Vaccines - UV1

A phase I/IIa clinical trial investigating the therapeutic cancer vaccine UV1 in combination with ipilimumab in patients with malignant melanoma: Four-year survival update

- UV1 targets the enzyme telomerase (hTERT) which is expressed in almost all cancer types and is essential for the immortality of cancer cells and a hallmark of cancer
- UV1 consists of three synthetic long peptides and vaccination induces Th1 responses in most patients irrespective of HLA type
- Pts w/ metastatic melanoma received treatment with UV1 (300 μg) + GM-CSF (75 μg) as an adjuvant, combined with ipilimumab (3 mg/kg)
- 12 patients were treated from Feb to Nov 2015
- Adverse events mainly included injection site reactions & diarrhea
- Immune responses occurred very early & 10/11 evaluable patients showed an immune response
 - $\,\circ\,$ 3 pts obtained PR & 1 had CR
 - 3-y OS)was 67%


Cancer Vaccines - ilixadencel

A randomized phase II study with ilixadencel, a cell-based immune primer, plus sunitinib versus sunitinib alone in synchronous metastatic RCC


- Ilixadencel is a cell-based allogeneic off-the-shelf product aimed to prime anti-cancer immune response when injected intratumorally
- Pts were randomly assigned at 2:1 ratio to the combination (COMBO) or sunitinib (SUN) arm
- From April 2014 to January 2017, 88 patients (58 COMBO, 30 SUN) were randomized
 - 5 pts (11%) in the COMBO arm had a CR as best response versus 1 patient (4%) in the SUN arm
 - o Confirmed ORR was 42.2 % (19/45) versus 24.0% (6/25)
 - o Median DoR was 7.1 months versus 2.9 months
 - o Median PFS was 11.8 months versus 11.0 months
 - o Median OS has still not been reached in either group
 - As of July 2019, 57% and 43% were alive in the COMBO and SUN arms, respectively
 - Treatment with ilixadencel did not add any treatment-related Grade 3-4 Adverse Events.

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)

- Lu et al conducted the first-in-human trial of CRISPR-edited, PD-1-ablated T cells in pts with advanced NSCLC
- 12 pts were transfused edited T cells & were monitored for up to 96 w for TRAEs
- Transfected cells were expanded ex vivo for 17–40 days
- Editing efficiency & in vivo persistence of edited T cells were monitored by NGS of mutations at the *PD-1* locus in infused cells for up to 1 year
- Relatively low levels of editing efficiency (median = 5.81%) in infused cells was observed & as a result, edited T cells did not persist long term in most patients
- Off-target editing by CRISPR was rare
- Infused pts were monitored for up to 2 years for TRAEs
- G 1/2 AEs occurred in 11 of the 12 patients and no grade 3+ AEs were reported
- No treatment-related dose-limiting toxicities were observed during the 2-yr follow-up
- No objective responses were in the treated patients, which may be due to a combination of low editing efficiency, poor T cell expansion, and/or lack of antigen specificity by the edited T cells
- 1 patient with the highest PD-1 editing efficiency showed long-term persistence of edited T cells in vivo & SD for 76 weeks, suggesting higher editing efficiency may be associated with improved clinical outcomes

CARs versus BiTEs

For treating solid tumors, CD3-coupled BiTEs specific for EPCAM (solitomab), CEA, and prostate-specific membrane antigen (PSMA)

New constructs, such as bifunctional checkpoint-inhibitory T cell engagers (CiTEs), simultaneous multiple interaction T cell engagers (SMITEs), trispecific killer engagers (TriKEs) and BiTE-expressing chimeric antigen receptor (CAR) T cells (CART.BiTE cells), have been developed to integrate various immune functions into one therapeutic approach or cellular vector, thereby enhancing anticancer activity without substantially increasing the risk of immune-related adverse effects

Slaney CY, et al; CARs versus BiTEs: A Comparison between T Cell–Redirection Strategies for Cancer Treatment; Cancer Discovery; Aug 2018 Goebeler, ME., Bargou, R.C. T cell-engaging therapies — BiTEs and beyond. Nat Rev Clin Oncol 17, 418–434 (2020)