Potent anti-tumor therapies based on OX40 engagement

Daniel Hirschhorn-Cymerman, PhD

Wolchok and Merghoub Laboratory

Ludwig Collaborative Laboratory Memorial Sloan Kettering-Cancer Center 7th November, 2015 Society for Immunotherapy of Cancer

Presenter disclosure information

Daniel Hirschhorn-Cymerman, PhD

The following relationships exist related to this presentation:

No relationship to disclose

Biological role of OX40-OX40L interaction in T-Cell function

Nature Reviews Immunology 4, 420-431 (June 2004)

OX40 engagement as an effective tumor immunotherapy

OX40 engagement as a monotherapy ineffective treating established poorly immunogenic tumors such as B16 melanoma

Combining chemotherapy (cyclophosphamide) and OX40 engagement regresses established B16 tumors

7 day old tumors

© 2009 Hirschhorn-Cymerman et al.

OX86 is an OX40 agonist Ab

JEM

Problem: CTX and OX86 can cure small tumors only

Adoptive T cell transfer of <u>CD4+ T cells</u> as a viable anti-tumor therapy

Melanoma-specifc CD4+ T cells significantly enhances the potency of CTX + OX86 combination therapy

21 day old tumor

*Trp1 CD4+ T cells are purified from a TCR transgenic mouse (Muranski, Blood 2008)

Trp1 cells synergize with OX86 and CTX to promote very large tumor regression

© 2012 Hirschhorn-Cymerman et al.

JEM

CTX and OX86 upregulate cytolytic granules on CD4+ T cells promoting tumoricidal function

Sorted Trp1 cells from spleen of treated mice

OX40 engagement promote cytotoxicity of CD4+ T cells phenotype by upregulating Eomes

Eomes expression is partially necessary for the efficacy of the triple combination therapy

Triple combination therapy eradicate large established tumors: Spontaneous melanoma model (TG3)

Triple combination therapy promotes bystander tumour killing of antigen loss variants

B78H1 is a B16 variant that does NOT express Trp1

JEM

Unusual immune-related adverse events of the triple combination therapy

Autoimmune depigmentation is typical of anti-melanoma immune therapies

CTX + IgG + Trp1 cells

CTX + OX86 + Trp1 cells

Swelling and destruction of tissues infiltrated with melanocytes such as the ears, tail, and snout (non hairy skin) ~ **3 weeks** after treatment Thymic involution

Ear thickness as a quantifiable model for immune-related adverse events

Preferential induction of irAE by anti-OX40 in combination therapy

Trp1 from ear pinnae secrete Th1 and Th2 but not Th17 cytokines upon restimulation

Ear of treated mice

Kinetics of Trp1 cells infiltration tested by Trp1-Luciferace in vivo imaging does not correlate with irEA onset

Late depletion of Trp1 cells does not affect irAE or anti-tumor immunity

Progressive infiltration of <u>neutrophils</u> in the ear pinnae proceeds Trp1 decline

Innate cells (neutrophil) progressively infiltrate the ear pinnae

Progressive neutrophil degranulation in the ear pinnae

Are neutrophils necessary for Immune related adverse events?

Direct correlation between ear phenotype and anti-tumor effects revealed similar mechanism

Antigen loss variant chimeric tumors is a more stringent model

JEM

Neutrophils depletion prevents elimination of antigen loss variant chimeric tumors

Trp1 Trp1+ Trp1 Trp1+ Trp1+ Trp1+ Trp1 Trp1+ Trp1+ Trp1 Trp1+ Trp1+ Trp1+ Trp1+ Trp1+ Trp1+ Trp1 Trp1+

Tissue with melanocytes

Teff (Eomesodermin) Th1 and Th2 cytokines

Tregs

Tumor Trp1 Trp1+ Trp1 Trp1+ Trp1+ Trp1+ Trp1 Trp1+ Trp1+ Trp1+ Trp1+ Trp1+ Trp1+ Trp1 Trp1+

Tissue with melanocytes

Innate cells (Neutrophils)

Acknowledgements

Jedd Wolchok

Taha Merghoub

Olivier de Henau Yanyun Li Roberta Zappasodi Cailian Liu Sadna Budhu Billel Gasmi Danny Khalil Czrina Cortez Levi Mangarin Tamar Plit Hong Zhong Beatrice Yin Xia Yang

Everyone in the lab!

Chris Sander (MSKCC) Yasin Senbabaoglu Michael Sadelain (MSKCC) Nicholas Restifo (NIH) Andrew Weinberg (OHSU)

E-mail: hirschhd@mskcc.org

Ludwig Collaborative and Swim Across America Lab at MSKCC Support: NIH, Dept of Defense, SU₂C, Melanoma Research Alliance, Breast Cancer Research Fdn, CRI, Damon Runyon Fdn, ASCO Conquer Cancer Fdn