

PD1, CD47, and Other Immune Based Approaches in AML

FEB 2022

Naval Daver, MD Director, Leukemia Research Alliance Program, Associate Professor Department of Leukemia MD Anderson Cancer Center

Disclosures

Naval Daver, MD

Research Funding: Pfizer, BMS, Novartis, Servier, Daiichi-Sankyo, Karyopharm, Incyte, Abbvie, Genentech, Astellas, Immunogen, Forty-Seven, Novimmune, FATE, KITE, Gilead, Trillium, KAHR therapeutics

Advisory/Consulting: Pfizer, BMS, Daiichi-Sankyo, Novartis, Jazz, Astellas, Abbvie, Genentech, Agios, Servier, Immunogen, Forty-Seven, Gilead, Syndax, Trillium, KITE, Shattuck labs

Disclaimer: Data will include medications not yet approved or with indications still under clinical study

Immune Based Approaches in AML

Two major approaches:

- 1. <u>Antibody drug</u> <u>conjugates</u> (CD33, CD123, CLL1)
- 2. <u>Adaptive or Innate</u> <u>immune</u>system harnessing therapies:
- a. Bi-specific antibodies (CD3 x AML antigen; CD47 x CD3, others)
- b. Immune checkpoint based approaches: Tcell and macrophage checkpoints
- c. CART, CAR NK, High volume hn-NK cells
- d. Vaccines

Short N....Daver N, et al, Cancer Discovery 2020

A Multicenter Phase I/Ib Study of Ipilimumab for Relapsed Hematologic Malignancies after Allogeneic Hematopoietic Stem Cell Transplantation

- 28 patients following allo-SCT; AML=12
- Ipilimumab at: 3 mg/Kg or 10 mg/Kg, every 3 weeks
- Median time from allo-SCT was 19.3 months (late postSCT)
- Efficacy in patients at the higher dose level (5/13 AML CR, median: 3 prior Rx)
- Extramedullary AML more sensitive?
- 6 (23%) cases of immune AE, 1 death

Davids M et al , NEJM July 2016

Hypomethylating Agents and Immune Regulation

1. Sato T, et al. Cold Spring Harb Perspect Med. 2017;7(5); 2. Li H, et al. Oncotarget. 2014;5:587-598; 3. Wang LX, et al. PLoS One. 2013;8:e62924; 3. Alatrash G, Daver N et al. Pharmacol Rev. 2016; 4. Daver N, Kantarjian H, et al. Leukemia. 2018.

OS AZA + NIVO vs Historical HMA Combo Protocols at MDACC R/R AML; Censored for ASCT Improved OS predominantly in early salvage

- 70 pts with R/R AML (median age 70 years)
- ¹Median OS better in salvage 1 (10.5 months vs 5.4 months, P<0.011); 1 yr OS = 50%

Improved efficacy in early salvage: Blina and CART in ALL, MGD006 in prim ref AML

mos

1. Daver N, et al. Cancer Discovery 2019 Mar;(9)3 2. Stahl M, et al Blood Advances 2018 Apr 24;2(8):923-932

Venetoclax appears to spare activated T-cells (TEM) during anti-tumor immunity and may synergize with PD-1's

TEM: CD62L- CD45RA-TEM RA: CD62L- CD45RA+ TCM: CD62L+ CD45RA-

Mali R et al, Cancer Discovery 2021

Tumor efficacy studies in immunocompetent C57BL/6 syngeneic mice bearing MC38 tumors.

20 25

CMV Recall Assay: *In vitro* venetoclax treatment in an antigen-specific cytomegalovirus (CMV) assays.

TIM-3: Cancer immunotherapy and leukemic stem cell target

- TIM-3 is an inhibitory receptor on multiple immune cell types, with a key role in regulating adaptive and innate immune responses^{1,2}
- TIM-3 is expressed on the majority of leukemic progenitors in AML, but not on normal HSCs^{3,4}
 - TIM-3 expression is seen to correlate with the severity of MDS and progression to AML⁵
 - TIM-3 activation is involved in LSC self-renewal and activation,⁶ as well as immune escape in AML⁷
- TIM-3 is a promising therapeutic target, providing an opportunity to both target leukemic stem cells and restore immune function^{4,8,9}

AML, acute myeloid leukemia; HSC, hematopoietic stem cell; LSC, leukemic stem cell; MDS, myelodysplastic syndrome; TIM-3, T-cell immunoglobulin domain and mucin domain-3.

Pardoll DM. Nat Rev Cancer 2012;12:252–264; 2. Das M, et al. Immunol Rev 2017;276:97–111; 3. Kikushige Y and Miyamoto T. Int J Hematol 2013;98:627–633;
 Kikushige Y, et al. Cell Stem Cell 2010;7:708–717; 5. Asayama T, et al. Oncotarget 2017;8:88904–88917; 6. Kikushige Y, et al. Cell Stem Cell 2015;17:341–352;
 Gonçalves Silva I, et al. EBioMedicine 2017;22:44–57; 8. Ngiow SF. Cancer Res 2011;71:3540–3551; 9. Sakuishi K, et al. Trends Immunol 2011;32:345–349.

AZA + TIM3 Ab Sabatolimab in frontline MDS/AML, encouraging activity in high-risk patients, especially for MDS

^aORR for patients with MDS was defined as CR + mCR + PR + SD with HI; ORR for patients with ND-AML was defined as CR + CRi + PR. ^bDOR events (including progression/relapse and death) reported out of the number of patients with a BOR of CR, mCR, or PR (for MDS) or CR, CRi, or PR (for AML).

Wei A et al, EHA 2021

Poor Outcomes in *TP53* Mutant AML, Even With Venetoclax-Based Treatment

Months

1. Chyla BJ et al. ASH 2019. Abstract 546. 2. Kim K, et al. ASH 2020. Abstract 693.

Mechanism of Action of CD47 Blocking Antibodies¹

Magrolimab Synergizes With Azacitidine to Induce Remissions in AML Xenograft Models

- Azacitidine (AZA) induces prophagocytic "eat me" signals, like calreticulin on cancer cells
- Increased "eat me" signals induced by AZA synergize with CD47 blockade of the "don't eat me" signal, leading to enhanced phagocytosis

Feng D, et al. ASH 2018, Abstract #616 (with adaptations).

Chao MP et al. Front Oncol. 2019;9:1380.

Magrolimab + AZA in Newly Diagnosed AML^{1,2}

- Magrolimab + AZA with 63% ORR and <u>42% CR rate in AML (similar responses in *TP53*-mutant disease)</u>
- Median time to response is 1.95 months (range, 0.95-5.6 mo); more rapid than AZA monotherapy
- Magrolimab + AZA efficacy compares favorably with AZA monotherapy (CR rate: 18%-20%)
- No significant cytopenias, infections, or immune-related AEs were observed; on-target anemia
- Median TP53 VAF burden at baseline: <u>73.3% (range 23.1% 98.1%)</u>
- 1. Daver N et al. EHA 2020. Abstract
- 2. Sallman D et al. ASH 2020. Abstract 330.

Preliminary Median Overall Survival Is Encouraging in Both TP53 Wild-Type and Mutant Patients

- The median OS is 18.9 months in *TP53* wild-type patients and 12.9 months in *TP53*-mutant patients
- Med OS with venetoclax + hypomethylating agent combinations (14.7-18.0 mo in all-comers,^{1,3} 5.2–7.2 mo in TP53 mutant^{2,3})
- Additional patients and longer follow-up needed

NE, not evaluable.

1. DiNardo CD, et al. N Eng J Med. 2020;383(7):617-629. 2. Kim K, et al. Poster presented at: 62nd ASH Annual Meeting; December 5-8, 2020 (virtual). 3. DiNardo CD, et al. Blood. 2019;133(1):7-17.

AZA/Magro/VEN Is a Highly Active Triplet in Newly Diagnosed Older/Unfit and R/R AML (*TP53* Mutant and WT)

- ASH 2021: phase 1/2 study of AZA, magrolimab, and venetoclax was assessed in different frontline and R/R AML cohorts
- Frontline cohort enrolled
 - Patients aged ≥75 y
 - Patients with documented comorbidities conferring ineligibility for intensive therapy
 - Patients with adverse risk karyotype and/or *TP53* mutation regardless of age/fitness
- 8 (47%) of patients in the frontline cohort had *TP53*-mutated AML

ASH 2021: Sunday, December 12: 9:30 AM

	Frontling AMI	R/R AML			
Outcomes, n (%)	(n = 16)	Venetoclax Naïve (n = 8)	Venetoclax Failure (n = 11)		
ORR CR/CRi CR CRi MLFS	16 (100) 15 (94) 13 (81) 2 (13) 1 (6)	6 (75) 5 (63) 3 (38) 2 (25) 1 (13)	3 (27) 3 (27) 0 (0) 3 (27) 0 (0)		
No response	0 (0)	2 (25)	8 (62)		

Results: Important to monitor Hgb closely after dose 1 and dose 2 of Magro

Ongoing Phase III Studies with Magro in Frontline AML

Phase III AZA+Magro vs Investigator Choice in TP53 AML (ENHANCE-2)

Stratification:

Appropriateness for non-intensive therapy vs. intensive therapy
 Age <75 vs. ≥75

3) Geographic region: US vs. outside the US

Endpoints:

- Primary endpoint: OS in TP53 mut AML population appropriate for non-intensive treatment
- First secondary endpoint (alpha controlled): OS in all TP53 mut AML population
- Other key secondary endpoints (alpha controlled): EFS, Transfusion independence, CR/CR_{MRD-}, PRO in all TP53 mut AML population

Phase III AZA+VEN+Magro vs AZA+VEN in older/unfit AML (ENHANCE-3)

ENHANCE-3: Phase 3 study of 1L unfit All Comer AML with magrolimab +venetoclax+ azacitidine

Endpoints:

Primary endpoint: CR, Overall survival

Secondary endpoints: 1. MRD-ve CR 2.CR+CRh, 3. Duration of CR, 4. Duration of CR+CRh 5. Transfusion independence 6. EFS 6. QOL/PRO

Multiple CD47-SiRPa targeting Ab and Bispecifics in or entering clinic for AML/MDS, lymphoma and solid tumors

Candidate	Magrolimab (AML, MDS)	TTI-621	TTI-622 (AML)	ALX148 (AML, MDS)	Lemzoparlimab (AML, MDS)	AO-176	SL-172154 (AML, MDS)
Molecule	CD47 mAb	WT SIRPαFc fusion protein	WT SIRPαFc fusion protein	High aff. SIRPαFc fusion protein	CD47 mAb	CD47 mAb	WT SIRPα-Fc-CD40L fusion protein
Fc isotype	lgG4	lgG1	lgG4	Inert IgG1	lgG4	lgG2	Inert IgG4
Proposed MoA	CD47	CD47 + NK	CD47	CD47	CD47	CD47 + direct killing	CD47 + CD40
Mol. weight (approx.)	150 kD	75kD	75kD	75kD	150 kD	150kD	>500kDa
RBC binding	Yes	No	No	Yes	No	No	No
Monotx/incl CR observed	Yes/ No	Yes/ Yes	Yes/ Yes	No/ No	Yes/No	No data	No data
Development stage	P3	P1b/2	P1b/2	P1/2	P1/2	P1/2	P1

Sources: Publications, presentations and filings; www.clinicaltrials.gov

Other companies with clinical stage CD47-targeting agents: ImmunOncia, Innovent Bio, Kahr Medical, TG Therapeutics, Zai Lab, Akeso

Bispecific CD47-SiRPa and T-cell (41BB) engaging approaches (DSP-107): Activating the innate and adaptive immune system

Novel Immune Strategies to Kill AML, Potentially Mutation Agnostic

ADAPTIVE:

- Recruiting CD3 T cell-- BiTEs linking to CD3 and targeting CD33/123; CARTs with modified CD3 killer cells (success in ALL, lymphoma, MM)
- Targets beyond CD33/123 e.g. CLL1, IL1RAP, TIM3, CD70, others

INNATE (Appears to be more resilient and preserved in AML)

- Recruiting macrophages-- targeting CD47 on AML (Magrolimab, Lemzo) or SIRP alpha on macrophages (Trillium, CC95251, ALX148)
- Recruiting NK cells-- allo NK-CARTs; NK engineered cells (hn, CD38 ko, IL15) - repeated infusions

Emerging Novel, potentially mutation agnostic approaches: may be especially important in high risk AML like TP53m

Anti-CLL1 CARTs in Children with R-R AML

- 2nd generation CLL1 CARTs 0.3-1 million/kg single dose post lymphodepletion with Flu-CTX
- 11 children with R-R AML treated
- 9 responses = 82% : 5 CR MRD-, 3 CR MRD+, 1PR

Zhang. JCO 39 (suppl). May 2021. ASCO 2021

FT516 / FT538: Monotherapy in Relapsed / Refractory AML

Phase 1 studies (n=12 treated)

- 3 doses per cycle (D1, D8, D15) x 2 cycles; each cycle 28 days
- Lympho-conditioning: Cyclophosphamide 500 mg/m2 IV x Fludarabine 30 mg/m2 IV x 3 days
- FT516 -- IL-2 6MU SC with each dose FT516; FT538 endogenous IL2 (no external IL2 needed)
- Median 3 (1 6) prior Rx lines, 9/11 adverse ELN risk
- <u>5 of 12 (42%) responses (4 CRi + 1 MLFS)</u>

FT516 (n=9): 3 CRi + 1 MLFS (90M and 300M cells); FT538 (n=3): 1 CRi (100M cells)

- No observed DLTs, No CRS, ICANS, or GVHD of any grade
- Ongoing remission >6 months in 2 FT516 patients without additional intervention, FT538 CRi ongoing

FATE. Public presentation April 2021

New ADCs and Bispecifics in AML

CD33 and CD123 various novel agents:

- IMGN632 (CD123) : ADC with novel single strand alkylating payload
 - CR/CRi rate 17%, ORR 20% in n=66 evaluable
 AML pts (Daver et al, ASH #734)
- Flotetuzumab (MGD006): CD123xCD3 dualaffinity re-targeting (DART) molecule
 - CR/CRi 32% in n=30 primary refractory AML cohort (Uy et al, ASH #733)
- XmAb 14045 CD3xCD123 bispecific
 - CR/CRi rate 23% in Part A (Ravandi ASH 2018)
- AMG330 and AMG673 CD3xCD33
 - CR/CRi rate 15% in n=27 evaluable pts (AMG330)
 - Subklewe et al, ASH #833 (AMG673)

- AMV564 CD3xCD33 bispecific

- Westervelt et al, ASH #834

Other promising targets:

- Cusatuzumab (ARGX-110): CD70 + AZA for Newly Dx Older AML
 - CR/CRi 83% and ORR 92% in n=12 (Ochsenbein ASH 2018)
- Magrolimab (5F9): CD47 + AZA
 - CR/CRi 50% and ORR 69% in n=16
 evaluable AML (Sallman et al, ASH #569)
- MCLA-117: CD3 x CLL1

Evolving Diagnostic and Treatment Paradigm for Newly Dx AML (TP53 should all be enrolled on clinical trials irrespective of age/fitness)

Questions: Feel free to contact ndaver@mdanderson.org

Daver N et al, Blood Cancer J. 2020 Oct 30;10(10):107.