

Advances in Cancer Immunotherapy™ Webinar: Clinical Updates From ASCO20 Virtual

September 10, 2020

5:00-6:00 p.m. ET

Webinar Agenda

- 5:00-5:05 p.m. ET Overview: Welcome and Introductions
- 5:05-5:40 p.m. ET Presentation
- 5:40-5:55 p.m. ET Question and Answer Session
- 5:55-6:00 p.m. ET Closing Remarks

How to Submit Questions

Mobile Phone

Webinar Faculty

Michael Atkins, MD – Georgetown-Lombardi Comprehensive Cancer Center

Shailender Bhatia, MD – University of Washington

Stephan Grupp, MD, PhD – University of Pennsylvania

Jose Lutzky, MD, FACP – University of Miami, Sylvester Cancer Center

5/70-0319-23

Michael Atkins, MD

- Deputy Director of Georgetown-Lombardi Comprehensive Cancer Center
- Scholl Professor and Vice Chair Department of Oncology and Medicine (Hematology/Oncology) at Georgetown University School of Medicine
- Research interests: Cancer immunotherapy, treatment of melanoma and renal cell carcinoma, predictive markers for response to biologic therapy, and antiangiogenic and targeted therapies

Learning objectives

Upon completion of this webinar, participants will be able to:

- Describe the latest advancements in combination and monotherapy treatments using immune checkpoint inhibitors for various cancers.
- Outline novel cell-based therapies under clinical investigation.
- Summarize current efforts for optimizing immunotherapy dosing and regimens.

Outline

- Renal cell carcinoma
- Melanoma
 - First-line treatments
 - Treatments after PD-1 failure
- Cellular therapies

Renal cell carcinoma

Dr. Atkins

Phase II Study of Nivolumab and Salvage Nivolumab + Ipilimumab in Treatment-Naïve Patients with Advanced Renal Cell Carcinoma (HCRN GU16-260)

Michael B. Atkins¹, Opeyemi A. Jegede², Naomi B. Haas³, David F. McDermott⁴, Mehmet A. Bilen⁵, Charles G. Drake⁶, Jeffrey A. Sosman⁷, Robert Alter⁸, Elizabeth R. Plimack⁹, Brian Rini¹⁰, Michael Hurwitz¹¹, David Peace¹², Sabina Signoretti¹³, Catherine J. Wu², Paul J. Catalano², Hans Hammers¹⁴

Extensive Biomarker studies in collaboration with the DFHCC Kidney Cancer SPORE DOD Translational Partnership Grant (Atkins, Wu)

Scans q12 weeks; Confirm response and PD; Measurements by RECIST 1.1 Mandatory biopsies

Atkins, ASCO 2020.

5/TC-0319-22

Results – Nivo monotherapy: Part A

Best	IMI	$T_{otol} (N = 122)$			
N (%)	Favor (30) N (%)	Interm (80) N (%)	Poor (12) N (%)	N (%)	
CR	4 (13.3)	3 (3.8)	0	7 (5.7)	
PR*	11 (36.7)	17 (21.2)	3 (25)	32 (26.0)	
SD	15 (50.0)	26 (32.5)	5 (42)	46 (37.4)	
PD	0	34 (42.5)	4 (33)	38 (30.9)	
ORR	15/30 (50)	20/80 (25)	3/12 (25)	39/123 (31.7)	
(95% CI) %	(31.3,68.7)	(16.6, 35.1)		(23.6, 40.7)	

ORR: 39/123 = 31.7% 95% CI (23.6, 40.7%)

Sarcomatoid RCC ORR: 7/22 = 31.8% (all PRs) 95% CI (13.9, 54.9%)

* 1 PR with missing IMDC Risk Category

Results – Nivo monotherapy: Part A

KM plot of Duration of Response (DOR), Part A

KM plot of DOR by IMDC Risk Group, Part A

Atkins, ASCO 2020.

SITC-0319-235

Results – Nivo/Ipi salvage: Part B

Best Response	IMDC R	Total		
N (%)	Favor (4)	Interm (24)	Poor (2)	N (%)
CR	0	0	0	0
PR	2 (50)	2 (8.3)	0	4 (13.3)
SD	1 (25)	6 (25)	0	7 (23.3)
PD	1 (25)	16 (66.7)	2 (100)	19 (63.3)

ORR: 4/30 = 13.3% 95% CI (3.8, 30.7)

Conclusions

- Nivo monotherapy represents an alternative frontline approach
 - Particularly for the ipilimumab or VEGFR TKI averse
 - Possibly for those with IMDC favorable risk or maybe in the adjuvant setting.
- Nivo/Ipi likely preferred over nivo monotherapy
 - Particularly for Intermediate/Poor Risk patients and those with sarcomatoid RCC
 - Higher RR, longer PFS, longer DOR, more CRs
- BMS CM 209-8Y8 study will address this issue directly for IMDC intermediate and poor risk patients (Albiges, Atkins Co-PIs)
- Biologic predictors of response needed (studies ongoing)

Pembrolizumab Plus Axitinib Versus Sunitinib As First-Line Therapy For Advanced Renal Cell Carcinoma: Updated Analysis Of KEYNOTE-426

Elizabeth R. Plimack¹; Brian I. Rini²; Viktor Stus³; Rustem Gafanov⁴; Tom Waddell⁵; Dmitry Nosov⁶; Frédéric Pouliot⁷; Denis Soulières⁸; Bohuslav Melichar⁹; Ihor Vynnychenko¹⁰; Sergio J. Azevedo¹¹; Delphine Borchiellini¹²; Raymond S. McDermott¹³; Jens Bedke¹⁴; Satoshi Tamada¹⁵; Lina Yin¹⁶; Mei Chen¹⁶; L. Rhoda Molife¹⁷; Michael B. Atkins¹⁸; Thomas Powles¹⁹

Results – OS in ITT population

Plimack, ASCO 2020.

5(TC-0319-23)

Results – PFS in ITT population

^aAs superiority of pembrolizumab plus axitinib was demonstrated at the first interim analysis, no alpha was allocated to PFS; only nominal p-values are reported. Data cutoff: January 6, 2020.

Results – ORR in ITT population

^aAs superiority of pembrolizumab plus axitinib was demonstrated at the first interim analysis, no alpha was allocated to confirmed objective response; only nominal p-values are reported. ^bPostbaseline assessment(s) available however not being evaluable (i.e., all post-baseline assessment(s) with insufficient data for assessment of response per RECIST 1.1. or CR/PR/SD <6 weeks from randomization). ^cNo post-baseline assessment available for response evaluation; + indicates an ongoing response at time of last disease assessment. Data cutoff: January 6, 2020.

SITC-0319-233

Results – Favorable risk patients

Plimack, ASCO 2020.

Results – intermediate/poor risk patients

Phase III TKI/IO-based combinations in RCC

Control	Comparator(s)		PFS (HR)	OS (HR)
Qupitipib	7 r	nos	Yes (0.69)	Yes (0.53)
	Axiumb + Pembrolizumab 23	mos	Yes (0.71)	Yes (0.68)
Sunitinib	Bevacizumab + Atezolizumab	Yes (0.88)	TE (0.93)*	
Sunitinib	Axitinib + Avelumab		Yes (0.69)	TE (0.78)
Sunitinib	Cabozantinib/Nivolumab 17	mos	Yes (0.51)	Yes (0.60)
Sunitinib	(Lenvatinib + Eve) <i>vs</i> Len/Pembro)	TE	TE

Lenvatinib + pembrolizumab phase II

	Anti-PD-1/ PD-L1 ^b	Anti-PD-1/PD-L1 and Anti-VEGF ^c	Nivolumab + Ipilimumab
Parameter	(N = 104)	(n = 68)	(n = 38)
ORR, %	55	59	47
(95% CI)	(45–65)	(46–71)	(31–64)
Best objective response, %			
Partial response	55	59	47
Stable disease	36	31	42
Progressive disease	5	6	8
Not evaluable	5	4	3
Median duration of response, months	12	9	NR
(95% CI)	(9–18)	(7–17)	(7–NR)

First-line therapy for RCC

- IO based doublets represent current SOC
 - No clear role for IMDC classification
 - VEGFR TKIs only indicated in patients who can't get IO
 - PD-L1 expression too inexact to select pts
- Nivo + ipi represents a <u>current</u> SOC for treatment naïve patients with intermediate and poor risk advanced RCC
 - Exclusion of good risk patients doesn't take into consideration IO endpoints durable response (TFS) possible in 30-35% of patients
- Anti-PD1 monotherapy may play a role in TKI/Ipi averse pts, particularly those with favorable risk

First-line therapy for RCC

- Anti-PD1/PD-L1 + anti-VEGF represents an alternative SOC
- Efficacy may relate to efficacy of TKI component/study design (bevacizumab < axitinib < cabozantinib < lenvatinib)/(early OS HR > late)
 - Axi/Pembro produces best OS HR (could be early reporting)
 - Cabo/Nivo results encouraging for stage of reporting
 - Len/Pembro promising 2nd line data; 1st line pending

On the other hand

- Unclear if activity is synergistic or merely additive
- Expense and likely toxicity exceed sequential treatments
- Ability to produce durable TFS yet to be established

Future directions for RCC

- Ipi/Nivo vs. VEGF/PD-1 blockade?
 - Need longer followup and appropriate phase III trials with IO endpoints, standardized biomarkers, and universally available crossover to be able to make rational treatment decisions
 - Need biomarker studies to help us sort out who should get which therapy, rather than focusing on clinical variables
 - Biomarkers should be tied to IO endpoints

Shailender Bhatia, MD

- Associate Professor, Department of Medicine, Division of Medical Oncology University of Washington and Fred Hutchinson Cancer Research Center
- Attending Physician Seattle Cancer Care Alliance
- Specialty: Skin Cancers (Melanoma, Merkel Cell Carcinoma), Immunotherapy, Intra-tumoral therapy, Targeted therapy

Melanoma studies -Front-line treatments

Dr. Bhatia

<u>Study # 1</u> A phase II study to evaluate the need for >2 doses of nivolumab + ipilimumab combination immunotherapy in patients with unresectable stage III/IV melanoma

Michael A. Postow, et al.

Study design

*If additional tumor growth was present, additional nivo + ipi was permitted

Results

Postow, ASCO 2020.

Results

Response Rates (RECIST 1.1)

	Week 6 N (%; 95%Cl)	Week 12* N (%; 95%Cl)	BORR N (%; 95%Cl)
Overall Response	21 (35%; 23-48)	29 (48%; 35-62)	34 (57%; 43-69)
CR	0 (0)	3 (5)	11 (18)
PR	21 (35)	26 (43)	23 (38)
SD	26 (43)	11 (18)	13 (22)
PD	13 (22)	18 (30)	13 (22)

- 57% had grade 3-4 treatment-related adverse events
- 3 patients died from treatment-related toxicity
 - Adrenal insufficiency & upper extremity DVT (3 doses)
 - Myocarditis (1 dose)

*Two patients with unknown Week 12 responses were included in denominator

My conclusions on Postow et al study

- An early restaging scan at 6 weeks is (somewhat) predictive of the final outcome.
- If major regression is seen at 6 weeks, an early switch to maintenance therapy is not entirely unreasonable (could potentially avoid IRAEs and hence, use of immunosuppression).
- If clear progression is seen at 6 weeks (especially PD that threatens clinical safety), this data may support proactive switching to another approach (such as BRAF-MEKi in BRAF mutant melanoma).
- Small N limits generalizability of results at this time.
- Another option to optimize Ipi-Nivo combination is reduced dose of Ipi (1 mg/kg)

Evaluation of Two Dosing Regimens for Nivolumab in Combination With Ipilimumab in Patients With Advanced Melanoma: Results From the Phase IIIb/IV CheckMate 511 Trial

Celeste Lebbé, MD, PhD¹; Nicolas Meyer, MD, PhD²; Laurent Mortier, MD, PhD³; Ivan Marquez-Rodas, MD, PhD⁴; Caroline Robert, MD, PhD⁵; Piotr Rutkowski, MD, PhD⁶; Alexander M. Menzies, MBBS, PhD⁷, Thomas Eigentler, MD⁸; Paolo A. Ascierto, MD⁹; Michael Smylie, MD¹⁰; Dirk Schadendorf, MD^{11,12}; Mazhar Ajaz, PhD, MRCP¹³; Inge Marie Svane, MD, PhD¹⁴; Rene Gonzalez, MD¹⁵; Linda Rollin, PhD¹⁶; Jennifer Lord-Bessen, PhD¹⁶; Abdel Saci, PhD¹⁶; Elena Grigoryeva, MD, PhD¹⁶; and Jacopo Pigozzo, MD¹⁷

Figure 1. CheckMate 511 study design

Table 2. Safety summary^a

	NIVO3+IPI1 (n = 180)	NIVO1+IPI3 (n = 178)
Rate of treatment-related grade 3-5 AEs, % (n/N) (95% Cl)	33.9% (61/180) (27.0–41.3)	48.3% (86/178) (40.8–55.9)
Difference between treatment-related grade 3-5 AE rates (95% CI)	-14.4% (-24.5 to -4.3)	
<i>P</i> value	0.0059	
Treatment-related AEs, %	85.6	93.8
Grade 3-4	33.3	48.3
Grade 5	0.6	0
All cause serious AEs, %	47.8	63.5
Grade 3-4	33.9	47.8
Grade 5	3.3	1.7
Treatment-related AEs leading to discontinuation, %	23.9	33.1
Grade 3-4	16.7	27.5
Grade 5	0.6	0

^aIncludes events reported between the first dose and 30 days after the last dose of study therapy

<u>Study # 2</u>

Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF^{v600} mutationpositive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial

Ralf Gutzmer, Daniil Stroyakovskiy, Helen Gogas, Caroline Robert, Karl Lewis, Svetlana Protsenko, Rodrigo P Pereira, Thomas Eigentler, Piotr Rutkowski, Lev Demidov, Georgy Moiseevich Manikhas, Yibing Yan, Kuan-Chieh Huang, Anne Uyei, Virginia McNally, Grant A McArthur*, Paolo A Ascierto* Lancet 2020; 395: 1835–44

Grant A. McArthur, et al., AACR 2020.

Study design

- Previously untreated, advanced BRAF^{V600} mutation–positive melanoma
 ECOG PS 0 to 1
- Measurable disease by RECIST v1.1

Randomized 514 patients

Randomization stratified by:

- · Geographic region and
- Centrally tested LDH level (≤ ULN versus > ULN)

Primary endpoint

Investigator-assessed PFS

Key secondary endpoints

- PFS assessed by an IRC
- Objective response (confirmed by observations at least 4 weeks apart)
- DOR
- OS

Results – Investigator-assessed PFS

Gutzmer R et al, Lancet 2020.

Α

Results – ORR and Duration of response

Figure 3: Kaplan-Meier estimate of duration of response in the intention-to-treat population NE=not estimable.

Results – Overall survival

5(TC-0319-2)

Adverse events

IRAEs of special interest (requiring steroids) were 63% in A+V+C vs 51% in V+C

5(TC-0319-23)

88% (52/59) of patients, who were ongoing on trial and progression-free at 5-years, were still receiving treatment (Dab or Tram or both).

No. at Risk

Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma C. Robert, J.J. Grob, D. Stroyakovskiy, B. Karaszewska, A. Hauschild, E. Levchenko, V. Chiarion Sileni, J. Schachter, C. Garbe, I. Bondarenko, H. Gogas, M. Mandalá,

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

J.B.A.G. Haanen, C. Lebbé, A. Mackiewicz, P. Rutkowski, P.D. Nathan, A. Ribas, M.A. Davies, K.T. Flaherty, P. Burgess, M. Tan, E. Gasal, M. Voi, D. Schadendorf, and G.V. Long

A Progression-free Survival in All Patients

IMspire150: 32% at 18 months

Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma

J. Larkin, V. Chiarion-Sileni, R. Gonzalez, J.-J. Grob, P. Rutkowski, C.D. Lao,

DOI: 10.1056/NEJMoa1910836

Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma

J. Larkin, V. Chiarion-Sileni, R. Gonzalez, J.-J. Grob, P. Rutkowski, C.D. Lao,

---- Nivolumab plus Ipilimumab ---- Nivolumab ---- Ipilimumab

DOI: 10.1056/NEJMoa1910836

My Conclusions – Front-line melanoma

- Preliminary data from the IMspire 150 suggests significantly improved PFS with addition of atezolizumab to the vemu-cobi combination.
- PFS improvement appears to be clinically meaningful, although OS data will be more definitive towards superiority of the triple combo.
- Toxicity appears manageable (although rate of steroid use was higher than anticipated in both arms reflecting challenges of identifying the culprit medications).
- Lack of PD-1 monotherapy comparator limits widespread clinical application of this triple combination, since many clinicians would favor using immunotherapy (such as Ipi-Nivo) in frontline therapy of metastatic melanoma.
- In my practice, I will likely use this data to support the addition of PD-1/PD-L1 blockade in patients who are going to get BRAF-MEKi anyways.

Spartalizumab combo with Tafinlar + Mekinist fails in Phase III advanced melanoma study

Basel, August 22, 2020 — Novartis announced today that the Phase III COMBI-i study evaluating the investigational immunotherapy spartalizumab (PDR001), in combination with the targeted therapies Tafinlar[®] (dabrafenib) and Mekinist[®] (trametinib), did not meet its primary endpoint of investigator-assessed progression-free survival. The trial was conducted among untreated patients with unresectable (Stage IIIC) or metastatic (Stage IV) BRAF V600 mutation-positive cutaneous melanoma, compared to Tafinlar + Mekinist alone³.

Jose Lutzky, MD, FACP

- Professor(pending), Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center
- Director, Cutaneous Oncology
- Expertise: Melanoma, basal cell carcinoma, squamous cell carcinoma and Merkel cell carcinoma

Melanoma studies – After PD-1 therapy

Dr. Lutzky

Ipilimumab (IPI) alone or in combination with anti-PD-1 (IPI+PD1) in patients (pts) with metastatic melanoma (MM) resistant to PD1 monotherapy

Ines Pires da Silva, et al.

Study design

Results

	IPI + PD1 (n=193)	IPI (n=162)	p-value
Objective Response Rate (%)	61 (32%)	21 (13%)	0.0021
Response			0.0076
Complete response (%)	21 (11%)	3 (2%)	
Partial response (%)	40 (21%)	18 (11%)	
Stable disease (%)	17 (9%)	23 (14%)	
Progressive disease (%)	115 (59%)	118 (73%)	
Rate of Disease Control (%)	78 (41%)	44 (27%)	0.0519
Response Duration (95% CI) - months	11.6 (9.4 – 15.5)	9.0 (4.4 – 13.7)	0.0467

Results

Adverse events

High Grade Adverse Events (≥ G3)	IPI + PD1 (n=193)	IPI (n=162)	p-value
Total	59 (31%)	54 (33%)	0.6474
Rash	3 (2%)	2 (1%)	0.9999
Diarrhoea / colitis	23 (12%)	33 (20%)	0.0401
Increased ALT/AST level	24 (12%)	15 (9%)	0.3960
Dyspnea / pneumonitis	2 (1%)	1 (1%)	0.9999
Nephritis	-	1 (1%)	0.4579
Endocrinopathies	3 (2%)	2 (1%)	0.9999
Others	9 (5%)	5 (3%)	0.5869

High grade (\geq G3) toxicity was not associated with response.

Significant antitumor activity for low-dose ipilimumab (IPI) with pembrolizumab (PEMBRO) immediately following progression on PD1 Ab in melanoma (MEL) in a phase II trial

Daniel J. Olson, et al.

Study design

Results

Best Overall Response

Response after PD1 Ab adjuvant progression		Response in n melar	Response in non-cutaneous melanoma		
2/13 (15%)		1/8 (14%)		
Response by BRAF Status		Response by	Response by PD-L1 Status [*]		
Mutant	4/19 (26%)	PD-L1 +	4/24 (17%)		
Wild Type	15/48 (31%)	PD-L1 -	15/39 (38%)		
Response by Liver or CNS disease		Response by	elevated LDH		
6/20 (30%)		8/19	(42%)		

Patients

Adverse events

Patients with toxicity at least possibly related to treatment - n (%)			Number of patients with ≥ grade 3 toxicity at least possibly related to study drug - n (%)* Colitis/Diarrhea	Grade 3 6 (9%)	Grade 4 0		
Crada 1 Cra		Crada	•	Crada 1	Rash (acneiform or maculopapular)	4 (6%)	0
Grade I Grad	aez	Grades	2	Grade 4	AST and/or ALT elevation	4 (6%)	0
					Lipase Elevation	2 (3%)	1 (1%)
	- in				Acute Kidney Injury	2 (3%)	0
61/70(87%) 40/70) (57%)	18/70 (2)	6%)	1 (1%)	Hyperglycemia	2 (3%)	0
					Pancreatitis	1 (1%)	0
					Skin and subcutaneous tissue disorders - Other,		
Possibly related toxicites occuri	ng at > 10% d	of			specify (vasculitis)	1 (1%)	0
patients - n (%)		Grade 1	Grade 2	Grade 3	Anemia	1 (1%)	0
Pruritis		23 (33%)	5 (7%)		Nausea	1 (1%)	0
Rash (maculo-papular, acneiform, p	apulopustular	·) 22 (31%)	3 (4%)	4 (6%)	Lymphocyte Count Decreased	1 (1%)	0
Colitis/Diarrhea		21 (30%)	7 (10%)	6 (9%)	Lympocyte count increased	1 (1%)	0
Fatigue		12 (17%)	11 (16%)		LungInfection	1 (1 %)	0
Nausea		12 (17%)	5 (7%)	1 (1%)	Allelies Dharehatara Elevation		0
Alanine/Aspartate aminotransferase	increased	11 (16%)	3 (4%)	4 (6%)	Alkaline Phosphatase Elevation 1 (1%)		U
Arthralgia		7 (10%)			*Four patients experienced two grade 3+ toxicities; one patient experienced four		
Anorexia		6 (9%)	8 (11%)		Median time to onset of all high-gra	de irAEs = !	55 days

Long-term follow up of lifleucel (LN-144) cryopreserved autologous tumor infiltrating lymphocyte therapy in patients with advanced melanoma progressed on prior therapies

Amod Sarnaik, et al.

Study design

Cohort 2 Endpoints:

- Primary: Efficacy defined as investigator-assessed Objective Response Rate (ORR) following RECIST 1.1
- Secondary: Safety and efficacy

Other Key Eligibility Criteria:

- One tumor lesion resectable for TIL generation (~1.5cm in diameter) and ≥ one tumor lesion as target for RECIST 1.1 assessment
- Age ≥ 18 years at the time of consent
- ECOG Performance Status of 0-1

Methods:

- Data Extract: 23 April 2020 for Cohort 2
- Cohort 2 Safety and Efficacy sets: 66 patients who underwent resection for the purpose of TIL generation and received lifileucel infusion

Results

RESPONSE	PATIENTS, N=66 n (%)
Objective Response Rate	24 (36.4)
Complete Response	2 (3.0)
Partial Response	22 (33.3)
Stable Disease	29 (43.9)
Progressive Disease	9 (13.6)
Non-Evaluable ⁽¹⁾	4 (6.1)
Disease Control Rate	53 (80.3)
Median Duration of Response	Not Reached
Min, Max (months)	2.2, 26.9+

- After a median study follow-up of 18.7 months, median DOR was still not reached (range 2.2, 26.9+)
- Response was seen regardless of location of tumor resected
- Mean number of TIL cells infused: 27.3 x 10⁹

Adverse events

		Cohort 2 (N=66)	
PREFERRED TERM	Any Grade, n (%)	Grade 3/4, n (%)	Grade 5, n (%)
Number of patients reporting at least one Treatment-Emergent AE	66 (100)	64 (97.0)	2 (3.0)*
Thrombocytopenia	59 (89.4)	54 (81.8)	0
Chills	53 (80.3)	4 (6.1)	0
Anemia	45 (68.2)	37 (56.1)	0
Pyrexia	39 (59.1)	11 (16.7)	0
Neutropenia	37 (56.1)	26 (39.4)	0
Febrile neutropenia	36 (54.5)	36 (54.5)	0
Hypophosphatemia	30 (45.5)	23 (34.8)	0
Leukopenia	28 (42.4)	23 (34.8)	0
Fatigue	26 (39.4)	1 (1.5)	0
Hypotension	24 (36.4)	7 (10.6)	0
Lymphopenia	23 (34.8)	21 (31.8)	0
Tachycardia	23 (34.8)	1 (1.5)	0

Conclusions – Later-line melanoma

- Data presented at ASCO 2020 corroborates previous clinical reports suggesting that patients progressing or refractory to PD1 blockade may respond to ipilimumab alone or ipilimumab+PD1 Ab.
- Ipi/Nivo outcomes appear superior
- These responses are durable and the toxicity manageable.
- Still awaiting results of trial SWOG 1606: randomized ipi vs ipi/nivo after progression on PD1 Ab.

Conclusions – Later-line melanoma

 Adoptive cell therapy with TIL for patients resistant or refractory to CTLA-4/PD1 CPI and BRAF/MEKi(if BRAF V600 mutated) has resulted in a 36% RR with median DOR not reached at a median of 18.7 mos of follow up.

• While toxicity is significant, it can be managed with appropriate patient selection and physician experience.

Stephan Grupp, MD, PhD

- Chief, Cell Therapy and Transplant Section, Director of the Cancer Immunotherapy Program, and Medical Director of the Cell and Gene Therapy Laboratory
- Expertise: CAR and TCR T cell therapy, engineered cell therapies for nonmalignant disorders

Cellular therapy studies

Dr. Grupp

First-in-human data of ALLO-501 and ALLO-647 in relapsed/refractory large B-cell or follicular lymphoma (R/R LBCL/FL): ALPHA study

SS Neelapu, et al.

Study design

Primary Endpoints

 Safety and dose-limiting toxicity of ALLO-647/Flu/Cy followed by ALLO-501

Key Secondary Endpoints

- Overall response rate
- ALLO-501 cell kinetics
- ALLO-647 PK

Key Eligibility Criteria

- R/R LBCL or FL
- At least 2 prior lines of therapy, including an anti-CD20 monoclonal antibody
- ECOG 0 or 1
- Prior autologous CAR T allowed if tumor remains CD19+
- Patients with Donor Specific Antibodies and rituximab > 15ng/ml were excluded

	DL1	DL2	DL3
Cell Dose	40 x 10 ⁶	120 x 10 ⁶	360 x 10 ⁶
	CAR ⁺ T cells	CAR ⁺ T cells	CAR ⁺ T cells

- Lymphodepletion Regimens
 - LD1: Flu/Cy and ALLO-647 13 mg/d x 3 days
 - LD2/LD3: Flu/Cy and ALLO-647 30 mg/d x 3 days (concomitant/staggered)

Results

Cell Dose and LD regimen	39 40 x 10 ⁶ CAR ⁺ cells (N=4)	9mg ALLO-64 120 x 10 ⁶ CAR ⁺ cells (N=4)	7 360 x 10 ⁶ CAR ⁺ cells (N=3)	ALL 39mg ALLO-647 (N = 11)	90mg Al 120 x 10 ⁶ CAR ⁺ cells (N=6)	LLO-647 360 x 10 ⁶ CAR ⁺ cells (N=2)	All 90mg ALLO-647 (N=8)	All Patients (N=19) Rate (95%Cl)
ORR, n (%)	3 (75%)	3 (75%)	1 (33%)	7 (64%)	4 (67%)	1 (50%)	5 (63%)	12/19 (63%) (38%, 84%)
CR , n (%)	1 (25%)	1 (25%)	1 (33%)	3 (27%)	4 (67%)	0 (0%)	4 (50%)	7/19 (37%) (16%, 62%)

Median follow-up time: 3.8 months (range: 0.7 - 6.1)

Adverse events

AE of Interest [‡]	Grade 1 n (%)	Grade 2 n (%)	Grade 3 n (%)	Grade 4 n (%)	Grade 5 n (%)	All grades n (%)
Cytokine Release Syndrome *	2 (9%)	4 (18%)	1 (5%)	-	-	7 (32%)
ICANS *	-		-	-	-	-
Graft-versus-Host Disease	-	-	-	(.=::	-	-
Infection	5 (23%)	4 (18%)	2 (9%) ⁺	1 H	-	11 (50%)
Infusion Reaction #	1 (9%)	9 (41%)	1 (9%)	-	-	11 (50%)
Neutropenia	-	1 (5%)	7 (32%)	7 (32%)	-	15 (68%)

- No DLT, GvHD
- Manageable CRS
- ALLO-501 toxicity not dose-proportional
- Median duration of hospitalization from D0: 7 days

* ASTCT Lee, 2019. ICANS: Immune Effector Cell-Associated Neurotoxicity Syndrome † CMV reactivations and Rotavirus infection # attributed to ALLO-647 Serious Adverse Events (time to resolution) *

- 4 patients (18%):
 - Gr2 pyrexia (2 days) and Gr2 CMV reactivation (6 days)
 - Gr3 rotavirus infection (15 days) and Gr3 hypokalemia (2 days)
 - Gr3 febrile neutropenia (2 days) and Gr3 hypotension (2 days)
 - Gr3 upper GI hemorrhage (<1 day) and Gr3 CMV reactivation (25 days)

[‡] Number of patients with AE regardless of attribution unless otherwise indicated, occurring from the start of study drug up to subsequent anti-cancer therapy (for patients reporting more than one AE within a preferred term, only one AE with the maximum grade is reported).

Data Cutoff Date: May 11, 2020

Phase 1 dose escalation and expansion trial to assess safety and efficacy of ADP-A2M4 in advanced solid tumors

David S. Hong, et al.

Study design

Adverse events

N=38; n (%)	Any grade	≥Grade 3	N=38; n (%)	Any grade	≥Grade 3
Patients with any AEs	37 (97.4)	37 (97.4)	Decreased appetite	16 (42.1)	2 (5.3)
Lymphopenia	37 (97.4)	37 (97.4)	Dyspnea	16 (42.1)	1 (2.6)
Leukopenia	35 (92.1)	35 (92.1)	Diarrhea	14 (36.8)	0
Neutropenia	35 (92.1)	34 (89.5)	Hypotension	14 (36.8)	4 (10.5)
Anemia	28 (73.7)	24 (63.2)	Hypophosphatemia	13 (34.2)	11 (28.9)
Fatigue	24 (63.2)	1 (2.6)	Febrile neutropenia	12 (31.6)	12 (31.6)
Nausea	23 (60.5)	0	Hyponatremia	12 (31.6)	8 (21.1)
Thrombocytopenia	23 (60.5)	18 (47.4%)	Sinus tachycardia	12 (31.6)	0
Pyrexia	22 (57.9)	0	Abdominal pain	10 (26.3)	1 (2.6)
CRS	19 (50.0)	2 (5.3)	Arthralgia	10 (26.3)	2 (5.3)
Vomiting	19 (50.0)	1 (2.6)	Rash	10 (26.3)	5 (13.2)

N=38	Related SAE; n (%)
Patients with any related SAEs	13 (34.2)
CRS	9 (23.7)
Pyrexia	2 (5.3)
Aplastic anemia	1 (2.6)
Pancytopenia	1 (2.6)
Cerebrovascular accident	1 (2.6)
Neurotoxicity	1 (2.6)
Encephalopathy	1 (2.6)
Rash	1 (2.6)
Sepsis	1 (2.6)
ALT/AST/Alk Phos increased	1 (2.6)
Arrhythmia	1 (2.6)

Results

	Overall	Synovial sarcoma	Non-sarcoma	Head & neck	Lung
n	38 ^[1]	16	22	3	2
BOR partial response (%)	9 (23.7)	7 (43.8)	2 (9.1)	1 (33.3)	1 (50.0)
BOR stable disease (%)	18 (47.4)	7 (43.8)	11 (50.0)	1 (33.3)	0
BOR progressive disease (%)	7 (18.4)	1 (6.3)	6 (27.3)	1 (33.3)	1 (50.0)
Unknown or missing (%)	4 (10.5)	1 (6.3)	3 (13.6)	0	0
ORR (%)	23.7	43.8	9.1	33.3	50.0

Multiple myeloma studies

- Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): Initial KarMMa results – Nikhil Munshi, et al
- Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011) – Sham Mailankody, et al
- Update of CARTITUDE-1: A phase Ib/II study of JNJ-4528, a B-cell maturation antigen (BCMA)-directed CAR-T-cell therapy, in relapsed/refractory multiple myeloma – Jesus Berdeja, *et al*

Trial comparison

Trial	Phase	Agent	Patient population	Primary endpoint
KarMMa	2	Ide-cel: anti-BCMA, 4-1BB, CD3ζ	R/R MM with ≥3 prior therapies	ORR
EVOLVE	1/2	Orva-cel: anti-BCMA, 4-1BB, CD3ζ	R/R MM with ≥3 prior therapies	1: safety/RP2D 2: ORR at RP2D
CARTITUDE-1	1b/2	JNJ-4528: two anti- BCMA, 4-1BB, CD3ζ	R/R MM with ≥3 prior therapies	1b: safety and confirm RP2D 2: efficacy

KarMMa results

Target Dose, × 10º CAR+ T cells	150 (n=4)	300 (n=70)	450 (n=54)	Treated (N=128)
≥1 CRS event, n (%)	2 (50)	53 (76)	52 (96)	107 (84)
Max. grade (Lee Criteria)* 1/2 3 4 5	2 (50) 0 0 0	49 (70) 2 (3) 1 (1) 1 (1)	49 (91) 3 (6) 0 0	100 (78) 5 (4) 1 (<1) 1 (<1)
Median onset, d (range)	7 (2-12)	2 (1-12)	1 (1-10)	1 (1-12)
Median duration, d (range)	5 (3-7)	4 (2-28)	7 (1-63)	5 (1-63)
Tocilizumab, n (%)	1 (25)	30 (43)	36 (67)	67 (52)
Corticosteroids, n (%)	0	7 (10)	12 (22)	19 (15)

Target Dose, × 10 ⁶ CAR+ T cells	150 (n=4)	300 (n=70)	450 (n=54)	lde-cel Treated (N=128)
≥1 NT event, n (%)	0	12 (17)	11 (20)	23 (18)
Max. grade (CTCAE)* 1 2 3	0 0 0	7 (10) 4 (6) 1 (1)	5 (9) 3 (6) 3 (6)	12 (9) 7 (5) 4 (3)
Median onset, d (range)	NA	3 (1-10)	2 (1-5)	2 (1-10)
Median duration, d (range)	NA	3 (2-26)	5 (1-22)	3 (1-26)
Tocilizumab, n (%)	NA	0	3 (6)	3 (2)
Corticosteroids, n (%)	NA	2 (3)	8 (15)	10 (8)

- Primary (ORR >50%) and key secondary (CRR >10%) endpoints met in the ide-cel treated population
 - ORR of 73% (95% CI, 65.8-81.1; P<0.0001*)
 - CRR (CR/sCR) of 33% (95% CI, 24.7-40.9; P<0.0001)
- Median time to first response of 1.0 mo (range, 0.5-8.8); median time to CR of 2.8 mo (range, 1.0-11.8)
- Median follow-up of 13.3 mo across target dose levels

EVOLVE results

	300 × 10 ⁶ CAR+ T Cells (n=19)	450 × 10 ⁶ CAR+ T Cells (n=19)	600 × 10 ⁶ CAR+ T Cells (n=24)	Total (N=62)
Any SAE, n (%)	4 (21)	5 (26)	8 (33)	17 (27)
AEs of special interest grade ≥3, n (%)				
Neutropenia	15 (79)	19 (100)	22 (92)	56 (90)
Anemia	8 (42)	8 (42)	14 (58)	30 (48)
Thrombocytopenia	6 (32)	10 (53)	13 (54)	29 (47)
Infections	3 (16)	4 (21)	1 (4)	8 (13)
Cytokine release syndrome (CRS)	0	1 (5)	1 (4)	2 (3)
Neurological events (NE)	1 (5)	1 (5)	0	2 (3)
MAS/HLH	0	2 (11)	1 (4)	3 (5)

CARTITUDE-1 results

	N = 29		
CAR-T-associated AEs, n (%)	All Grade	Grade ≥3	
Cytokine release syndrome (CRS) ^a	27 (93)	2 (7)	
Neurotoxicity consistent with ICANS ^b	3 (10) ^c	1 (3)	

Timing and management of CRS

- Median time to onset of CRS = 7 days (2 12)
- Median duration of CRS = 4 days (2 64)
- 23 (79%) patients were given tocilizumab
- 6 (21%) patients each were given anakinra or corticosteroids

Phase 1/2 study of AUTO3, the first bicistronic chimeric antigen receptor (CAR) targeting CD19 and CD22, followed by anti-PD1 in patients with relapsed/refractory (r/r) diffuse large B cell lymphoma (DLBCL): results of safety cohorts of the ALEXANDER study

Aravind Ramakrishnan, et al.

Study design

Adverse events

AEs (Total N = 23)	All Grades N (%)	Grades 3 & 4 N (%)
Neutropenia	20 (87%)	20 (87%)
Thrombocytopenia	15 (65%)	13 (57%)
Anaemia	13 (57%)	11 (48%)
Cytokine release syndrome	9 (39%)	0
Fever	9 (39%)	0
Constipation	7 (30%)	0
Fatigue	6 (26%)	0

	50 x10 ⁶ AUTO3 no pem (N=4)	50 x10 ⁶ AUTO3 D14 pem (N=3)	150 x10 ⁶ AUTO3 D14 pem (N=4)	450 x10 ⁶ AUTO3 D14 pem (N=4)	450 x10 ⁶ AUTO3 D -1 pem (N=4 [#])	150-450 x 10 ⁶ AUTO3 D-1 pem <u>RP2D</u> (N=4)	Total (N=23)
Grade 1 CRS	1	0	1	1	2	1	6 (26.1%)
Grade 2 CRS	0	0	1	1	0	1	3 (13%)
≥ Grade 3 CRS	0	0*	0	0	0	0	0

	50 x10 ⁶ AUTO3 no pem (N=4)	50 x10 ⁶ AUTO3 D14 pem (N=3)	150 x10 ⁶ AUTO3 D14 pem (N=4)	450 x10 ⁶ AUTO3 D14 pem (N=4)	450 x10 ⁶ AUTO3 D -1 pem (N=4 [#])	150-450 x 10 ⁶ AUTO3 D-1 pem <u>RP2D</u> (N=4)	Total (N=23)
All grades NT	1	0	0	0	0	0	1 (4.3%)
≥ Grade 3 NT	1	0	0	0	0	0	1 (4.3%)

Results

Dose level ≥ 150 x 10⁶ day -1 pembro appears promising

	50 x 10 ⁶ No pem (N=4)	50 x 10 ⁶ D14 pem (N=3)	150 x 10 ⁶ D14 pem (N=4)	450 x 10 ⁶ D14 pem (N=4)	450 x 10 ⁶ D-1 pem (N=4)	150-450 x 10 ⁶ D-1 pem <u>RP2D</u> (N=4)
CR	1	1	2	2	2	3
PR	1	1	0	1	0	1
PD	2	0	2	1	2**	0
NE	0	1*	0	0	0	0

- All Dose Levels (N=23): ORR 65%, CRR 48%
 - $\geq 150 \times 10^6$ (N=16): ORR 69%, CRR 56%
 - ≥ 150 x 10⁶, Day -1 pem (N=8): ORR 75%, CRR 63%

* NE because baseline PET negative disease, **Includes one patient that received only 125 x 10⁶ and NE per protocol

Cellular therapy conclusions

- 2 FDA approved products, with more to come soon
- Myeloma multiple products, excellent response rates with manageable toxicity, but the big question will be durability
- Allo/off the shelf products are feasible, with comparable response rates to auto CAR T in NHL. Looking good in the short term.
 - Too soon to know about durability
 - Lot to lot variability is an open question that will require larger Ns
 - Will reinfusion and/or further engineering to extend persistence be necessary?
- Checkpoint Rx with CAR T can be safe and may improve efficacy in NHL
- Early evidence for solid tumor activity in TCR Ts. NY-ESO and now MAGE A4
 - Still limited to HLA-A2
- Things are moving forward

Other impactful studies from ASCO 2020

- Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 study – Thierry André, et al.
- Durvalumab and tremelimumab in combination with FOLFOX in first line RAS-mutated, microsatellite-stable metastatic colorectal cancer: Results of the first intermediate analysis of the phase IB/II MEDITREME trial Francois Ghiringhelli, *et al.*
- CITYSCAPE: Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab plus atezolizumab versus placebo plus atezolizumab as 1L treatment in patients with PD-L1-selected NSCLC - Delvys Rodriguez-Abreu, *et al.*
- Maintenance avelumab + best supportive care (BSC) versus BSC alone after platinumbased first-line chemotherapy in advanced urothelial carcinoma: JAVELIN Bladder 100 phase III results – Thomas Powles, et al.

ASCO 2020 trends

- Immunotherapy combinations and sequencing becoming important questions
- Many studies are investigating optimal dosing regimens
- Standard-of-care is rapidly changing for many cancers
- While early-stage data are promising, we need to wait for final OS results to determine true advantages of novel immunotherapies

How to Submit Questions

Mobile Phone

Journal for ImmunoTherapy of Cancer

CME Credit Now Available for *JITC* **Reviewers**

As a way to give back to the community of reviewers who volunteer their time to support SITC's open access, peer-reviewed journal, the Journal for ImmunoTherapy of Cancer (JITC), is pleased to offer continuing medical education (CME) credits for reviewers.

To learn more about the benefits of serving as a JITC manuscript reviewer and to volunteer visit:

sitcancer.org/jitc

- Module 1: Basic Immunology Concepts Available now!
- Module 2: Basic Cancer Immunotherapy Concepts September 2020
- Module 3: Immune Checkpoint Blockade October 2020
- Module 4: Managing Immune Checkpoint Inhibitor Adverse Events - November 2020
- Module 5: Other Approaches (Cytokines, Vaccines and Immune Cell Engagers) December 2020
- Modules 6-8: Available early 2021

Designation SITC Graduate in Cancer Immunotherapy / SITC-G

Cost per Module

SITC Member Price: \$25.00 Non-Member Price: \$31.25

ACI Online Courses

- FREE, CME-, CNE-, CPE- and MOC- certified
- Links to original trials
- The latest FDA approvals
- Real-World Case Studies
- Printable "Best Practices" charts

To learn more visit: <u>sitcancer.org/acionline</u>

Upcoming Live Virtual Programs

- Madison, Wis.* Thursday, Sept. 24, 2020
- Washington, D.C.⁺ Thursday, Oct. 8, 2020
- Seattle, WA⁺ Saturday, Oct. 31, 2020

To register and view full accreditation information visit: <u>sitcancer.org/aci</u>

The ACI series is jointly provided by Postgraduate Institute for Medicine and SITC. To view full support of commercial interests vist: sitcancer.org/aci

Continuing Education Credits

- Continuing Education Credits are offered for Physicians, PA's, NP's, RN's and Pharmacists
- You will receive an email following the webinar with instructions on how to claim credit
- Questions and comments: <u>connectED@sitcancer.org</u>

Thank you for attending the webinar!

Jointly provided by Postgraduate Institute for Medicine and the Society for Immunotherapy of Cancer

This webinar is supported, in part, by independent medical education grant funding from Amgen, AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb, Celgene Corporation, Exelixis, Inc., Genentech, Incyte Corporation and Merck & Co., Inc.