NEW THERAPEUTIC DEVELOPMENT APPROACHES TO HUMAN CANCERS:

Target ID - Target Validation in Pathogenesis - Evaluation of Therapeutic Approaches and Combinations - Clinical Application

> Dennis J Slamon, MD, PhD University of California at Los Angeles

THE PAST

The "One-Size-Fits-All" Approach to Cancer

Traditional Clinical Approaches to Initial Malignancy

 SURGERY - Traditional excisional approaches with clean margins i.e. "we got it all". Newer approaches include cryosurgery, hyperthermic surgery, radiofrequency ablative surgery, etc.

 RADIATION THERAPY - Traditional external beam, IMRT, brachytherapy (implants)

 SYSTEMIC THERAPY - Cytotoxics (chemotherapy), hormonal therapy, biologic therapy We Need a Paradigm Shift - A New Approach Based on the Biology of the Disease

Premise #1 - Cancer is not a single disease.

Premise #2 - Cancer is not a single disease even within a given histology. The only thing ALL breast cancers share in common is that they arise in the organ that defines us as a species - the breast.

Premise #3 - A need to develop new therapeutic approaches that take into account #1 and #2

Hanahan and Weinberg Cell 2000

Lessons from the HER2 Story

- 1.) Target Identification
- 2.) Target Validation
- 3.) Preclinical Confirmation
- 4.) Determinition of Potential Usage Preclinically
- 5.) Clinical Translation Proof of Concept
- 6.) Clinical Optimization

Target Identification

The HER2 Alteration

Slamon et al. Science 1989

HER-2/neu Program at UCLA

Clinical Material (Tumor Specimens)

> Clinical Trial (Current Studies)

Therapeutic Model (Cell Line and Animal Data) Molecular Studies (DNA, RNA, Protein Analyses)

Clinical Data (Patient Information)

Basic Science Hypothesis Testing (Cell Line and Animal Data)

HER-2 Oncogene Amplification

HER-2 Oncoprotein Overexpression

Shortened Survival

Median Survival from First Diagnosis

HER-2 overexpressing3 yrsHER-2 normal6 - 7 yrs

Slamon et al, 1987

HER-2/neu Program at UCLA

Clinical Material (Tumor Specimens)

> Clinical Trial (Current Studies)

Therapeutic Model (Cell Line and Animal Data) Molecular Studies (DNA, RNA, Protein Analyses) Clinical Data (Patient Information)

Basic Science Hypothesis Testing (Cell Line and Animal Data)

Human Breast Cancer Cells

Human Ovarian Cancer Cells

*Consistent results in 9 additional Breast & Ovarian Cancer Cell Lines

Immunohistochemistry

MCF 7

Engineered HER-2 Over-expression in MCF-7 cells Increased Proliferation and Decreased Contact Inhibition

Anchorage-Independent Growth

Growth on Plastic

Target Validation

In Vivo Growth Inhibition Assay MCF 7/HER-2

Clinical Translation

HER-2/neu Program at UCLA

Clinical Material (Tumor Specimens)

> Clinical Trial (Current Studies)

Molecular Studies (DNA, RNA, **Protein Analyses**) **Clinical Data** (Patient Information) **Basic Science**

Hypothesis Testing

(Cell Line and Animal Data)

Phase I Clinical Trials of Anti-HER-2 MAbs

<u>Phase I</u>	<u>N</u>	Study Design	Institution
MuMAb 4D5	20	Single dose (0.12 - 500 mg)	UCLA
H0453g	15	CDDP 100 mg/m ² x 3 + rhuMAb HER-2 (10 - 500 mg x 9)	UCLA
H0452g	17	Multi-dose (10 - 500 mg)	UCLA, MSKCC, UCSF
H0407g	16	Single dose (10 - 500 mg)	UCLA, MSKCC

Objective - Combination Compared to Chemotherapy Alone

- Primary
 - Time to disease progression (REC)
 - Safety
- Secondary
 - Overall response rates
 - Durations of response
 - Time to treatment failure
 - 1-year survival
 - Quality of life

Design - Stratification to Chemotherapy

No prior anthracyclines AC = doxorubicin (60 mg/m²) or epirubicin (75 mg/m²) + cyclophosphamide (600 mg/m²) q 3 wks x 6 cycles

Enrollment

Total enrolled	469			
Randomization	H + CT 235		CT 234	
Subgroups				
H + AC 143	AC 138	H + T 92	T 96	

Summary: Phase III Clinical Trial Comparing Best Available Chemotherapy to Same Therapy + Herceptin

	<u>Enrolled</u>	<u>R.R. (%)</u>	<u>Dur. Res.</u>	<u>T.T.P</u>
H + CT	235	49 (53% [↑])	9.3M (58%↑)	7.6M (65%↑)
СТ	234	32	5.9M	4.6M
H + AC	138	52 (20% [↑])	9.1M (40%↑)	8.1M (33%↑)
AC	145	43	6.5M	6.1M
H + T	92	42 (163%↑)	11.0M (150%↑)	6.9M (130%↑)
Т	96	16	4.4M	3.0M

Survival Time

- Overall Herceptin impact on survival uncertain
 - Limited duration of follow-up (≥12 months)
 - CT alone patients allowed to enter Herceptin extension protocol
- Preliminary analysis improved 1-yr survival
 - H + CT = 78% alive
 - CT alone = 67% alive

Clinical Safety

Summary of Herceptin Safety

- Herceptin is generally well tolerated
 - Single agent
 - Combined with chemotherapy
- Most adverse events mild to moderate in severity
 - Infusion associated symptoms, including fever and chills primarily with first dose
- Serious adverse events infrequent
- Increased incidence of cardiac dysfunction, particularly when administered with anthracycline based therapy

Cardiac Dysfunction Outcomes (CREC)

	<u>H + AC</u>	<u>AC</u>	<u>H + T</u>	I
Cardiac Dysfunction Events (#)	<mark>39 (27%)</mark>	<mark>9</mark> (7%)	<mark>11 (12%)</mark>	<mark>2 (1%)</mark>
Herceptin Rx Post Event (#)	14	5*	6	1*
Deaths (#)	4	1	1	2
MBC	4	0	0	2
Cardiac	0	1	0	0
Pneumonia	0	0	1	0

*Herceptin extension protocol

Conclusion

- The results of this study indicate that Herceptin[™] (Trastuzumab) in combination with chemotherapy is well-tolerated and provides substantial clinical benefit in first-line treatment of HER-2 overexpressing metastatic breast cancer. Drug approved in Sept. 1998 as the first proto-oncogene kinase targeted therapeutic.
- Future studies of Herceptin will be important
 - Adjuvant breast cancer preclinical data show earlier rx better
 - Other combinations

Adjuvant use of Herceptin must be evaluated in a randomized-controlled trial

The "One-Size-Fits-All" Approach to Breast Cancer

CALGB 9344: Overall Survival

Henderson, et al. J Clin Oncol. 2003;21:976-83.

CALGB 9741 Interim Analyses

Disease-Free Survival

Overall Survival

N = 1973; Median F/U = 36 mos

Can We Do Better?

The Hope - Clinical Translation of Biologically Relevant Molecular Information Should Lead to More Effective and Less Toxic Therapeutic Approaches
The HER2 Alteration

Slamon et al. Science 1989

Disease-Free Survival

LVEF Declines by NYHA Class

	AC-T	AC-TH	TCH
>10%, <lln< th=""><th>9</th><th>34</th><th>7</th></lln<>	9	34	7
>15%, <lln< th=""><th>6</th><th>25</th><th>4</th></lln<>	6	25	4
Grade 3/4 CHF	2	20	1

THE FUTURE

Can We Do Even Better?

The Hope - Clinical Translation of Biologically Relevant Molecular Information Should Lead to Even More Effective and Less Toxic Therapeutic Approaches

Can we recognize molecular signaling pathway activation in cancer?

- Is activation ligand dependent?
- Are the initiating receptors interchangeable?
- What are the downstream effector genes?
- How do we determine if a cancer cell is dependent on a particular pathway or receptor?
- Can we identify gene signatures that predict response to molecularly targeted therapies?

Pathway Analysis

How Does an Alteration in This One Gene Result in So Many Changes in Biologic Behavior?

 While it is an important "inciting" event, amplification of HER2/neu does not cause it's associated clinical phenotype in isolation.

 What other genes and/or pathways need to be engaged to bring about this profound clinical picture?

 A better understanding of those genes and/or pathways directly associated with the HER2/neu alteration will lead to more effective therapeutic approaches

Global gene expression profiling

Confirmation of expression

Possible Biologic Relevance

Confirmation of Functional Relevance

CDNA Microarrays Synteni/Incyte Double Fluorescence Method GEMS 1-4, V (representing 40,000 elements)

Self RNA test

MCF-7/H2 v.s. CN

490 elements $\Delta > 2.5$ fold

Clustering: gene expression relatedness

Pathway construction:
 biologically biased hierarchical ordering

Summary: cDNA Microarray	⁴MCF-7 HER-2down	^B MCF -7 HE R - 2 u p
re cepto rs	12	8
growth factors, cytok in es	8	5
GF induced proteins	10	0
ce ll cyc le relate d	1	11
a poliprot ei n r e la ted	8	0
ce II a d hes ion-cytosk el eton	26	31
oncoge nes/tr anscription fact ors	19	7
proteas es an d protease in hibitors	3	5
DN A/chro m oso m e ma in ten a nce	5	2
drug res istanc e	0	10
compliment related	1	3
houseke eping/chaperone proteins	10	3
nucleotide exchangefactors	3	1
tRNA synt hetas e s	0	8
e n zymes/ m etab ol is m	20	12
m isc. s u rfac e ant ig ens	0	0
uncatag orized k nown genes	29	13
unknown genes	20	7
EST with homology	24	15
EST wi tho ut ho mology	103	47
tot al changes g reater than 2.5 fold	302	188

Selection Criteria for Analysis of Differentially Expressed Genes

- Genes falling into identifiable pathways
- Genes effected in multiple cell lines
- Changes most likely to directly contribute to the HER-2/neu phenotype
- Expression changes reversed by Herceptin

Angiogenic Pathways

Gene name	MCF-7 con vs H2	ZR-75 con vs H2	LnCap con vs H2	S KBR3 W/Hcpt
VEGF	1. 64 (f)	4.5 (f)	2.2 ()	-
Angiopoietin-1	4.2 (f)	-	-	1 .9 (f)
FGFR 4	2.8 (j)	2.3 (f)	-	-

Global gene expression profiling

Confirmation of expression

Possible Biologic Relevance

Confirmation of Functional Relevance

Cell Line RNA Northern: VEGF Probe

Kb

4.4

3.7

Does activation of HER-2/neu result in increased VEGF production?

Concentration of VEGF in Conditioned Media of MCF-7 Neo and MCF-7 HER-2/neu Cells

Treatment

Global gene expression profiling

Confirmation of expression

Possible Biologic Relevance

Confirmation of Functional Relevance

Are the increased VEGF levels in HER-2/neu transfectants associated with increased angiogenesis in vivo?

<u>Anglogenesis in MCF-7 Spherolds:</u>

Day 0

1 x mag. 913 μm x 789 μm

MCF-7 HER-2/neu:

1 x mag. 876 μm x 857 μm

Anglogenesis in MCF-7 Spherolds:

<u>Day 3</u>

MCF-7 Neo:

1 x mag. -Vessel buds starting to form -Vessels dilated

MCF-7 HER-2/neu:

1 x mag.
-Increased # of vessels
- Vessels dilated
- Vessels tortuous

<u>Anglogenesis in MCF-/ Spherolds: Day</u>

<u>MCF-7 Neo:</u> <u>1 x mag.</u> - Small capillaries and a few buds present <u>10 x mag.</u> - Vessels hemorrhaging

1 x 10 x

MCF-7 HER-2/neu:

- <u>3.5 x mag.</u>
- Huge vessel network
 - Large amount of vessel budding

<u>Anglogenesis in MCF-7 Spherolds:</u>

MCF-7 Neo:

3.5 x mag.-Mature vasculature- No vessel buds-Development stopped

MCF-7 HER-2/neu:

10 x mag.
-High number mature vessels
- Vessel buds in center of tumor
- Vasculature still growing Does Herceptin decrease the levels of VEGF production in tumor cells?

<u>Levels of VEGF in MCF-7 Cells</u> after Herceptin Treatment

MCF-7 HER-2/neu Cells

MCF-7 Neo Cells

VEGF (ng/cell)

Do the Preclinical Data Translate to Findings in Clinical Specimens?

Patient and disease characteristics in node-negative and -positive primary breast cancer patients (n=611)

		Number of	
Factors		Patients	<u>%</u>
^ a a		Feveero	611
Aye Tumor sizo*		bo years	бП
	(-2 cm)	221	30.0
	(< 2 CIII)	201	30.Z
	(2-4.9 Cm)	310	10 C
Number of p	(<u>></u>) CIII) ocitivo podoc*	, 0 4	10.0
		200	10 7
	0	290	40. <i>1</i> 20.7
	1-3	103	30.7
	4-9	61	10.3
	<u>></u> 10	01	10.3
Lympn node	Status	200	40.0
	Negative	290	48.3
	POSITIVE	310	51.7
Nuclear grad		000	00.4
	1-2	368	60.4
	3-4	241	39.6
Hormone rec	eptor status*	٢	
	Negative	137	22.4
	Positive	474	77.6
HER-2/neu s	tatus***		
	Negative	497	81.3
	Positive	114	18.7
VEGF ₁₂₁ stat	tus****		
	Negative	252	41.2
	Positive	359	58.8
VEGF ₁₆₅ stat	tus****		
	Negative	158	25.9
	Positive	453	74.1

Prognostic Significance of Detectable VEGF₁₆₅ and VEGF₁₂₁ Expression for Survival in Primary Breast Cancer

Konecny G, et al.: Clin Cancer Res in press, 2004

A biological concentration-effect relationship between VEGF expression and survival

Correlation between HER2 and VEGF₁₂₁ in Primary Breast Cancer

VEGF ₁₂₁			
	negative	positive*	Total
HER2 negative	226 (45.5%)	271 (54.5%)	480 (100%)
HER2 positive	26 (22.8%)	88 (77.2%)	108 (100%)

Chi-Square Test: p < 0.001

* VEGF₁₂₁-positive - detectable VEGF₁₂₁ levels above the lower assay sensitivity of 16 pg/ml

Konecny G, et al.: Clin. Cancer Res, 2004, 10:1706-1716

Combined effects of HER2 and VEGF₁₆₅ expression on survival

Konecny G, et al.: Clin. Cancer Res. 2004, 10:1706-1716

Global gene expression profiling

Confirmation of expression

Possible Biologic Relevance

Confirmation of Functional Relevance

What is the effect of Herceptin and the VEGF antibody on tumor growth *in vivo*?
Effect of Herceptin, rhuMAb VEGF, and the Combination against HER2-overexpressing xenografts.

Pegram, et al., Phase I/II Investigator-initiated Trial "Combined biologic therapy of breast cancer", DAMD BC004021, (2001)

Do the Preclinical Therapeutic Data Translate into the Clinic?

Phase I/II clinical trial of Herceptin and Avastin in breast cancer

Hypothesis: upregulation of VEGF in HER2+ MBC contributes to the aggressive phenotype of HER2+ MBC. The 'angiogenic switch' modulated by Herceptin can be exploited in the clinic by combined blockade of these two "linked" pathways

LABC or MBC
HER2+ by FISH
ECOG 0-1
Age >18 Y
LVEF WNL

Herceptin 4mg/kg → 2mg/kg qw

Avastin dose escalation (n=24)

A 3mg/kg → 5mg/kg →10mg/kg IV d7 then q14d **Study Endpoints**

- **1.** Clinical Safety
- 2. Pharmacokinetics
- 3. Efficacy

Herceptin 4mg/kg → 2mg/kg qw + Avastin q14d

Day 0 1

1 month

9 months

Pharmacokinetics:

Mean $t_{1/2}$ bevacizumab = 19.3d Mean $t_{1/2}$ trastuzumab = 22.2d

Trastuzumab + Bevacizumab, Phase I

2-23-04

5-3-04

3-30-04

6-22-04

2-23-04

3-30-04

6-22-04

PK/Toxicity/Efficacy Data in 9 pts

 No change in the PK of either antibody when used as combo

- No untoward toxicity induced by combo 1 pt with mild ^bp treated with diazide
- 2 CR's
- ♦3 PR's
- 2 SD's > 7 months
- 2 PD's

Challenges to combined use of targeted therapeutics

- Identifying the appropriate patient population
- Do we simply integrate new targeted therapies with established regimens? Advantages/Problems
- Is broader target specificity better than more narrow targeting?
- What are the most rational targeted combinations to test clinically?
- Can we determine the best likely combinations preclinically before going into the clinic?

Acknowledgements - UCLA

- Jane Arboleda
- Raul Ayala
- Gina Bernardo
- Jenny Chen
- Amy Cook
- Judy Dering
- Melinda Epstein
- Robert Ferdman
- Richard Finn
- Chuck Ginther
- Padraic Glaspy

- Fairooz Kabbinavar
- Gottfried Konecny
- Mark Pegram
- Richard Pietras
- Lillian Ramos
- David Reese
- Hong Mei Rong
- Nishan Tchekmedyian
- Cindy Wilson
- Steve Wong

Acknowledgements (con't)

Industry Partners:

Amgen, Genentech,

Amgen: Frank Calzone Elaina Cajulis

Nat. Br. Ca. Coalition

Revion Foundation: Ronald Perlman Jim Conroy

 Community-based/UCLA Clinical Research
Network --- TORI
Nancy Ryba, Polly Candella David Reese, Fairooz Kabbinavar