

Senior Member, Departments of Anatomic Pathology and Cutaneous Oncology

Moffitt Cancer Center

Professor of Pathology, Cell Biology, and Dermatology University of South Florida College of Medicine Tampa, FL, USA

Disclosure

Consultant: Myriad Corporation

Acknowledgement

• Jim Mule, PhD, for kindly providing slides used in this presentation

Overview

- Immune markers of prognosis in melanoma
 - Primary melanoma
 - Metastatic melanoma
- Methods of assessment
- Clinical applications

Immune infiltrates in primary melanoma

- Three-tier classification of tumor-infiltrating lymphocytes (TIL's)
- Brisk TIL's independently predict survival
- Brisk TIL's inversely correlate with sentinel node involvement

Immune infiltrates in metastatic melanoma

- Brisk TIL's (CD3, CD8) in lymph node metastasis predictive of overall survival
- Brisk TlL's (CD4) in lymph node and distant metastasis predictive in response to interferon-α (n=20)

Immune infiltrates predictive of therapeutic response

- High baseline expression of genes for Foxp3 and indoleamine 2,3 dioxygenase and increase in TILs at week 4 predict response to anti-CTLA-4 therapy
- Tumor expression of PD-L1 predicts response to anti-PD1 therapy

Prediction of response to anti-PD-1

- 46 patients from phase I study
- Response predicted by:
 - Higher pre-treatment CD8/PD-1/PD-L1 density at invasive margin and in tumor
 - More PD-1 and PDL-1 cells in proximity
 - Greater increase in CD8+ during therapy
 - Responders more likely to express Stat1 in CD8+ areas
- CD8+ density at invasive margin best predictor

Utilization of Tissue Bank and Gene Expression Profiling for Discovery and Validation of Immune Gene-related Signatures

Total Cancer Care Initiative

Total Cancer Care™ Consortium

Total Cancer Care features

- Lifetime prospective patient followup
- Single-site biorepository with capability to hold 120,000 snap-frozen (15 minutes) tissues
- Specimens assessed by pathologist for tumor %, necrosis
- Data warehouse stores clinical, pathologic, cancer registry, and molecular data

Total Cancer Care to Date

443,000 Patients
Community Sites
and Moffitt

105,000 TCC Consented Patients MCC (60%) Sites (40%)

35,356 Tumors Collected MCC (43%) Sites (57%)

16,279 Gene Expression Profiles

As of May 2, 2014

Data Generated from Specimens				
CEL Files (Gene Expression Data)	16,279 files			
Targeted Exome Sequencing	4,016 samples			
Whole Exome Sequencing (Ovary, Lung, Colon, Myeloma)	574 samples			
Whole Genome Sequencing (Melanoma)	13 samples with normal pairs			
SNP/CNV (Lung, Breast, Colon)	559 samples			
RNA Sequencing (Breast, Myeloma)	430 samples			

Separation of tissue types in first PCA component

T[1] (10.7%) **MOFFI1**

Study site does not affect the gene expression profile

Source of Immune Gene-related Signatures

- Solid tumor microarrays
- Peripheral blood microarrays

Discovery of Immune Gene-related Signatures using TCC: genomic, pathology, clinical data

- 20,155 unique genes on the chip
- 338 colon tumors analyzed from Moffitt TCC repository
- ~50 metagene groups (bioinformatics in cooperation with industry) - one was denoted "T cell activation", with 97 unique immune gene symbols with overwhelming enrichment for immune-related and inflammationrelated genes
- Sections of selected paraffin blocks from highest and lowest signatures evaluated for the presence or absence of immune cell infiltration composition and patterns of inflammation
- Correlated with annotated clinical data

Metagene Grouping: "T Cell Activation" Genes

12 Chemokines Uncovered in the Metagene Group "T Cell Activation"

Biologic Features of the Chemokine Signature

- CXCL13, CCL19, CCL21: essential in coordinated involvement in LTi cell homing and lymph node development
- CXCL13: within B cell follicles and highly selective for B cell attraction
- CCL19 and CCL21: critical in normal lymphocyte homing of T (and dendritic) cells in secondary lymph nodes
- CXCL9, 10, and 11: all related T cell attractants
- CCL2, 3, 4, 5, 8, and 18: powerful chemoattractants, with some individual degrees of differences, for monocytes, dendritic cells, T cells, B cells, and NK cells (including naïve and/or activated)
- Notably <u>absent</u>: CCL1, CCL20, and CCL22 selectively recruit and/or maintain T regulatory cells

Variation in lymphoid infiltrates observed in human colorectal cancer

Gene Signature Negative

None

Gene Signature Positive

Ectopic follicle

Ectopic follicle with capsule CENTER

12-Chemokine GES Identifies Primary CRC Patients with Better Overall Survival

- No association with patient age, gender, tumor stage, location, differentiation, or MSI/MSS status
- But direct correlation
 with presence of ELNs and
 patient survival: >4 years
 versus <18 months (p <
 0.0004) for signature
 positive v negative tumors

Coppola D, Mulé JJ. J Clin Oncol. 2008 Sep 20;26(27):4369-70 Coppola et al., Nebozyhn N, Khalil F et al. Am J Pathol. 2011 Jul;179(1):37-45

Interrogation of a 12-Chemokine Gene Expression Signature across 14,492 Solid Tumors of Differing Histology: Principal Component

Analysis

- TCC Samples
- Primary & Metastatic Lesions
- PCA score as a measure of chemokine signal
- Top 10% of samples were selected as high
- High expression tissues includes Skin

*mainly ascites/effusions
**insufficient tissue/quality issues

Messina JL et al. Sci Rep. 2012;2:765. doi: 10.1038/srep00765. Epub 2012 Oct 24.

			ı	
	Total #	# Above 90th	% Above 90th	
Tissue Type	CEL files	percentile	percentile	exact_test p value
Oral Cavity	98	25	25.51	8.08E-06
Cervix	75	19	25.33	0.000106163
Tongue	32	8	25	0.011540008
Skin	569	115	20.21	1.11E-13
Lung	2708	488	18.02	3.63E-47
Soft Tissue	97	14	14.43	0.170421294
Bladder	212	27	12.74	0.20279835
Larynx	56	7	12.5	0.501205795
Breast	3705	401	10.82	0.052757354
Stomach	133	13	9.77	1
Large Bowel	2111	169	8.01	0.000837406
Kidney	850	61	7.18	0.003839317
Thyroid	71	5	7.04	0.550835068
Esophagus	90	6	6.67	0.377460472
Rectum-Anus	188	10	5.32	0.027468551
Liver	116	5	4.31	0.041696746
Endometrium	333	14	4.2	0.000131198
Small Intestine	52	2	3.85	0.167045365
Uterus	377	13	3.45	2.00E-06
Pancreas	468	15	3.21	2.70E-08
Ovary*	670	21	3.13	8.78E-12
Renal Pelvis	62	1	1.61	0.01881245
Brain	438	4	0.91	2.30E-15
Prostate**	981	5	0.51	9.64E-39

Total 14492 1448

12-Chemokine Gene Expression Signature (GES): 120 Stage IV Non-Lymph Node Melanoma Metastases

Green negative for GES

12-Chemokine GES Identifies Stage IV Melanoma Patients with Better Overall Survival

12-Chemokine GES Identifies Ectopic Lymph Node Structures in Melanoma

12-Chemokine GES can identify clinical responders in vaccine-treated metastatic melanoma

- Phase II vaccine study in 75 pts. with nonresectable MAGE-A3-positive stage III or IV M1a metastatic melanoma
- Response defined as CR, PR (Recist) or SD
- Using cel data, Moffitt GES accurately identified the clinical responders in 20/22 (91%) cases
- Now working with industry to evaluate OS in both melanoma and non-small cell lung cancer patients

Evaluation of the 12-chemokine GES in FFPE: a multiplexed quantitative hybridization-based gene expression assay

Evaluation of GES on validation cohort

- Tissue from 62 melanoma patients (10-12 paraffin slides per case) for RNA extraction,
 H&E, IHC staining and analysis
- Cases are from MDACC's tumor infiltrating lymphocyte trial(s)*
- 4/62 cases failed FFPE assay due to extracted RNA quality issues

^{*}courtesy of Dr. Laszlo Radvanyi

Signature negative case

Signature positive case

Implications/Future Studies

- Correlation of gene-related signature to response to immunotherapy
- Focus on response to nivolumab, ipilimumab, and anti-PD-L1 monoclonal antibody (MPDL3280A)
- Potential for selection of cancer patients for immunotherapy interventions based on a particular immune gene-related signature

Additional Studies

•Employing laser capture microdissection with DNA and RNA isolation and sequencing methodologies to address questions of clonality and functional relationships of the resident B cells and T cells within the tumor microenvironment, including in depth T cell receptor and immunoglobulin transcript repertoire analyses

Laser Capture Microdissection Studies

Ectopic lymph nodes in melanoma metastasis to the lung; A) stained with H&E at 200x [scale = 200μ m]; B) sample prepared for laser capture microdissection (w/o coverglass) [scale = 100μ m]; C) targeted tissue (red); D) tissue sections post LCM documenting the missing material; E) the LCM cap containing the captured material. Note: The missing targeted material in the cap is due to a phenomena described as polymer depletion and is normal, but should be documented as a % efficiency of the capture (~80% efficient).

James Mule, PhD
Anders Berglund, PhD
Domenico Coppola, MD
Steven Eschrich, PhD
David Fenstermacher, PhD
Mark Lloyd
Xiaotao Qu, PhD
Michael Schell, PhD
Vern Sondak, MD
Jeff Weber, MD, PhD

Industry collaborators:

Tom Schall, PhD
Michael Nebozhyn, PhD
Hongyue Dai, PhD
Andrey Lobody, PhD
Vincent Brichard, MD, PhD
Timothy Yeatman, Md
Patrick Hwu, MD
Christopher Kirk, PhD

Making Cancer History®

National Cancer Institute
at the National Institutes of Health

