

PD-L1 Overview

Allen M. Gown, M.D. Clinical Professor of Pathology University of British Columbia, Vancouver, BC

Disclosures

• Speakers bureau, Agilent Technologies

Questions: PD-L1

- What is PD-L1 and why test for its expression?
- How do we predict which patients will respond to PD-L1 therapy?
- How is PD-L1 expression assessed?
- Why can't there be just one universal PD-L1 assay?
- What other than PD-L1 expression can predict response to PD-L1 therapy?

Questions: PD-L1

- What is PD-L1 and why test for its expression?
- How do we predict which patients will respond to PD-L1 therapy?
- How is PD-L1 expression assessed?
- Why can't there be just one universal PD-L1 assay?
- What other than PD-L1 expression can predict response to PD-L1 therapy?

#LearnACI © 2021–2022 Society for Immunotherapy of Cc Depositphotos

sitc

Society for Immunotherapy of Cancer

Advances

Function and Dysfunction of T Cells

- T cells play critical role in antiviral and anti tumor immune responses
- Appropriate activation of antigen-specific T cells leads to clonal expansion and acquisition of effector function
- Cytotoxic T lymphocytes (CTLs) enabled to lyse target cells

Function and Dysfunction of T Cells

- In some cases there is T cell dysfunction, where CTLs lose ability to proliferate in presence of antigen ("exhaustion")
- There are various receptors that negatively regulate T cell function and promote exhaustion
- One of these is PD-1 (CD279)

Advances in Car Antigen-presenting cell T cell PD-L1 or PD-L2 PD-1 CD80 or CD86 **CD28** CD80 or CD86 CTLA-4 -B7RP1 ICOS HVEM BTLA KIR Peptide MHC class I or II Signal 1 TCR LAG3 CD137L **CD137** OX40L **OX40** CD70 **CD27 CD40** CD40L GAL9 TIM3 Adenosine A2aR

Multiple immune modulators (of which PD-1/PD-L1 is just one)

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Nature Rev Immunol Jan 2015

PD-1

- Programmed Death 1 Receptor
- An "immune checkpoint" protein
- Expressed on activated T cells
- Engaged by ligands PD-L1 and PD-L2, expressed by infiltrating immune cells and, in some cases, by tumor cells

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Maughan BL et al., Frontiers Oncol 7:56, 2017

The Potential

- The immune system has the capability of destroying host tumor cells
- Under certain conditions the host immune system can be hijacked by tumor cells through the PD-1/PD-L1 pathway and rendered ineffective
- Drugs targeting the PD-1/PD-L1 can remove this "brake" on the immune system and accelerate host killing of tumor cells

Questions: PD-L1

- What is PD-L1 and why test for its expression?
- How do we predict which patients will respond to PD-L1 therapy?
- How is PD-L1 expression assessed?
- Why can't there be just one universal PD-L1 assay?
- What other than PD-L1 expression can predict response to PD-L1 therapy?

BIOMARKERS of RESPONSE TO IMMUNE CHECKPOINT INHIBITORS

- PD-L1 expression on tumor cells
- PD-L1 expression on immune/inflammatory cells
- •MMR deficiency in tumor cells
- Mutational burden of tumor

Advances in Cancer ImmunotherapyTM

Tasuku Honjo, M.D., Ph.D.

2018 Nobel Prize Science and Medicine

with James Allison Ph.D.

- Discovered PD-1 on T cells -1992
- Blocked PD-1 and restored Tcell targeting of cancer cells

Advances in Cancer ImmunotherapyTM

The Logic

Identifying tumors with the target molecules (PD-L1) identifies patients who will be most likely to respond to PD-L1targeted drugs

T cell Activation by PD1/PDL1 Blockade

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

The Pharmaceutical Journal Vol 293, No 7837/8, 2014, DOI: 10.1211/PJ.2014.20067127

US FDA Approved Drugs Targeting PD-1 and PD-L1

Drug	Name	Target	First Approval
Pembrolizumab	Keytruda™	PD-1	2014
Nivolumab	Opdivo™	PD-1	2014
Atezolizumab	Tecentriq™	PD-L1	2016
Avelumab	Bavencio™	PD-L1	2017
Durvalumab	Imfinzi™	PD-L1	2017
Cemiplimab	Libtayo™	PD-1	2018
Dostarlimab	Jemperli™	PD-1	2021

March 2022

© 2021–2022 Society for Immunotherapy of Cancer

Tumors with FDA approval: Pembrolizumab]

H&N Squamous (2nd line)	No testing required
H&N Squamous (1st line)	22C3 IHC: ≥ 1% TPS
Melanoma	No testing required
NSLC (2nd line therapy)	22C3 IHC: ≥ 1% TPS
NSLC (1st line therapy, stage III or metastatic)	22C3 IHC: ≥ 1% TPS
NSLC (combo with chemo in 1st line therapy)	No testing required
Urothelial CA	No testing required
Cervical CA (2nd line)	22C3 IHC: ≥ 1% CPS
Breast cancer, triple negative	22C3 IHC: ≥ 10% CPS
Esophageal squamous cell carcinoma	22C3 IHC: ≥ 10% CPS
Urothelial CA, not eligible platinum	No testing required
Hepatocellular carcinoma	No testing required
Renal cell carcinoma	No testing required
Merkel cell carcinoma	No testing required
Hodgkin's Lymphoma	No testing required
ALL TUMORS	MMR IHC or MSI PCR
ALL TUMORS	TMB ≥ 10

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

sitc

Society for Immunotherapy of Cancer

(Partial list)

Tumors with FDA approval: Pembrolizumab] Calendar Years 2021- 2022

Renal Cell Carcinoma - adjuvant	Keynote 564	HR 0.68 DR or death	No testing required
Cervical CA - +/- bevacizumab	Keynote 826	HR 0.64 OS	22C3 IHC: ≥ 1% CPS
Renal cell CA first line with lenvatinib	Keynote 581	HR = 0.39 PFS	No testing required
TNBC - neoadjuvant with chemotherapy and continued single agent	Keynote 522	HR = 0.63 OS	No testing required
Endometrial CA combo with levatinib (2nd line)	Keynote 775	HR - 0.68 (OS)	No testing required
Squamous cell CA, skin, mono therapy 2nd line	Keynote 629	ORR 35-50%	No testing required
Gastroesophageal CA montherapy 3rd line	WITHDRAW N	WITHDRAWN	22C3 IHC: ≥ 1% CPS
Gastroesophageal CA, first line combo with transtuzumab and chemotherapy	Keynote 811	OS 75% (vs. 52% T + C)	HER2 testing
Gastroesophageal CA, combo with platinum plus fluropyrimidine chemo	Keynote 590	HR = 0.73 (OS)	No testing required
Small cell lug carcinoma	WITHDRAW N	WITHDRAWN	No testing required

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

sitc

Society for Immunotherapy of Cancer

Advances in Cancer ImmunotherapyTM

Advances in Cancer ImmunotherapyTM

Reck M, e al. N Engl J Med 375:1823-33, 2016

#LearnACI © 2021-2022 Society for Immunotherapy

Month

5/10-0720-15

Reck M, e al. N Engl J Med 375:1823-33, 2016

- Pembrolizumab group showed higher response rate (44.8% v. 27.8%)
- Pembrolizumab group showed longer median progression free survival (10.3 months v 6.0 months)
- Hazard ratio for death at 6 months = 0.6
- Pembrolizumab associated with significantly longer progression-free survival in patients with PD-L1 high expression

Tumors with FDA approval: Nivolumab

Update: March 2022

H&N Squamous	No testing required
Hodgkin's Lymphoma	No testing required
NSLC (1st line therapy)**	28-8 IHC: ≥ 1% TPS
Renal cell CA**,***	No testing required
Urothelial CA	No testing required
Colorectal AdenoCA**	dMMR or MSI-H
Esophageal squamous cell CA	No testing required
Hepatocellular CA**	No testing required
Gastroesophageal CA	No testing required
Mesothelioma	No testing required
Gastroesophageal adenoCA	28-8 IHC: ≥ 5 CPS

#LearnACI

In combination with other chemotherapy* or immunotherapy** or TKI***

© 2021–2022 Society for Immunotherapy of Cancer

Tumors with US FDA approval: Atezolizumab

Urothelial carcinoma	SP142 IHC ≥5% IC
NSCLC (1st line)	SP142 IHC ≥50% TC / ≥10% IC
NSCLC* (first line)	No testing required
Small cell lung CA*	No testing required
Hepatocellular CA***	No testing required
Melanoma**	BRAF V600 mutation

Breast TNBC approval withdrawn 2021

#LearnACI © 2021-2022 Society for Immun In combination with other chemotherapy* or immunotherapy** or anti-VEGF*** Update: March 2022

Anti-PD-L1 Therapies

	_		
Mo	noth	erapy	

Melanoma Cutaneous squamous cell CA Head & Neck squamous cell CA NSCLC **Cervical cancer Esophageal squamous cell CA TN Breast CA Renal cell CA** All dMMR/MSI solid tumors All high TMB solid tumors **Urothelial carcinoma** Gastroesophageal adenocarcinoma Hepatocellular carcinoma

Anti-PD-L1 Therapies

Combination with cytotoxic chemotherapy	NSCLC, Small Cell Lung CA, Head & Neck SCC, TN Breast CA, Gastroesophageal CA
Combination with VEGF inhibitors	Hepatocellular CA, Renal Cell CA, Endometrial CA
Combination with CTLA-4 inhibitors	Melanoma, MSI Colorectal CA, Renal cell CA, Hepatocellular CA, NSCLC, Pleural Mesothelioma
Combination with tyrosine kinase inhibitors	Renal cell CA
Combination with VEGF inhibitors and chemotherapy	NSCLC
Combination with BRAF and MEK inhibitors	Melanoma

Questions: PD-L1

- What is PD-L1 and why test for its expression?
- How do we predict which patients will respond to PD-L1 therapy?
- How is PD-L1 expression assessed?
- Why can't there be just one universal PD-L1 assay?
- What other than PD-L1 expression can predict response to PD-L1 therapy?

 $\# | earn \Delta($

Source of Confusion

PD-L1 Testing Has Predictive Value but is dependent upon the tumor type and the PD-L1 Test employed

TPS(Tumor Proportion Score)

Determined by estimating the number of PD-L1-positive tumor cells divided by the total number of tumor cells

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

TPS = 100%

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

TPS <1%

© 2021–2022 Society for Immunotherapy of Cancer

CPS(Combined Proportion Score)

Determined by calculating the number of PD-L1-positive tumor cells PLUS immune cells divided by the total number of tumor cells

© 2021–2022 Society for Immunotherapy of Cancer

Immune cell PD-L1-negative

Tumor cell PD-L1-negative

Immune cell PD-L1 positive

Tumoor cell PD-L1 positive

#LearnACI

How To Perform CPS

Select 20x field

- Determine number of tumor cells
- Count PD-L1 positive cells (red)
- Repeat over 10
 20x fields

Advances in Cancer ImmunotherapyTM

Strategies for CPS Calculation

Agilent/Dako

© 2021–2022 Society for Immunotherapy of Cancer

#LearnA(

© 2021–2022 Society for Immunotherapy of Cancer

© 2021–2022 Society for Immunotherapy of Cancer

CPS = 18

© 2021–2022 Society for Immunotherapy of Cancer

Yet Another Different Tumor and Immune Cell Scoring System

(e.g., SP142, companion diagnostic for atezolizumab in lung cancer)

- Tumor cells scored as percentage of viable tumor cells showing membranous signal of any intensity
- Immune cells scored as proportion of tumor area* occupied by PD-L1 staining immune cells of any intensity
- Cutoff ≥ 50% tumor cells OR IC covering ≥ 10% of tumor area

*area occupied by viable tumor cells, intra and peritumoral stroma

© 2021–2022 Society for Immunotherapy of Cancer

| earn A(

© 2021–2022 Society for Immunotherapy of Cancer

Comparison of PD-L1 Assays NSCLC

Drug	Pembrolizumab	Nivolumab	Atezolizumab	Cemiplimab
Target of Drug	PD-1	PD-1	PD-L1	PD-1
Anti-PDL1 antibody used in test	22C3	28-8	SP142	22C3
Type of diagnostic	Companion	Complementary	Complementary	Companion
Platform	Dako Link 48	Dako Link 48	Ventana	Dako Link 48
Scoring system cutoff NSCLC	≥1% TPS (1st line)	≥ 1% TPS (2nd line)	≥ 50% TC ≥ 10% IC	TPS ≥ 50%

#LearnACI

© 2021–2022 Society for Immunotherapy of Cancer

Questions: PD-L1

- What is PD-L1 and why test for its expression?
- How do we predict which patients will respond to PD-L1 therapy?
- How is PD-L1 expression assessed?
- Why can't there be just one universal PD-L1 assay?
- What other than PD-L1 expression can predict response to PD-L1 therapy?

The One PD-L1 Test for All PD-L1 Drugs on All Tumors

© 2021–2022 Society for Immunotherapy of Cancer

"Blueprint" PD-L1 IHC Assay Comparison Project

- Percent positive tumor cells comparable with 22C3, 28-8, and SP263
- •SP142 positive on fewer cells
- Variability in immune cell signals greater
- For 14/38 cases (37%) different PD-L1 classification would be made depending upon which assay employed

Hirsch FR et al., J Thorac Oncol 12:208-222, 2017

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Hirsch FR et al., J Thorac Oncol 12:208-222, 2017

Diagnostic Accuracy in Fit-for-Purpose PD-L1 Testing

Carol C. Cheung, MD, PhD, JD, *† Hyun J. Lim, PhD, ‡ John Garratt, RT(cyto), § Jennifer Won, PhD, § C. Blake Gilks, MD, §|| and Emina E. Torlakovic, MD, PhD§¶

 Analytical sensitivity and specificity no longer sufficient as measurements of quality in IHC biomarker testing such as PD-L1

Diagnostic accuracy, not concordance, is most critical

App Immunohistochem Mol Morphol 27:251-7, 2019

Diagnostic Accuracy in Fit-for-Purpose PD-L1 Testing

Carol C. Cheung, MD, PhD, JD, *† Hyun J. Lim, PhD, ‡ John Garratt, RT(cyto), § Jennifer Won, PhD, § C. Blake Gilks, MD, §|| and Emina E. Torlakovic, MD, PhD§¶

App Immunohistochem Mol Morphol 27:251-7, 2019

- No direct links connecting analytical sensitivity and specificity with diagnostic sensitivity and specificity.
- Accuracy should be assessed by laboratory comparing their results with gold standard/reference laboratory
- D D D

sitc

Society for Immunotherapy of C

• Each approved "drug-disease-diagnostic assay" combination is unique and the 3 components are typically linked together by clinically validated results (ie, response data from clinical trials).

Advances in Cancer ImmunotherapyTM

Same Tumor, But Different Assays and Scoring Cutoffs for Different Drugs in Different Clinical Settings

Tumor	Drug	Antibody	IHC scoring	Cutoff
NSCLC	Pembrolizumab	22C3	TPS	≥ 1%
NSCLC	Nivolumab*	28-8	TPS	≥1%
NSCLC first line metastatic	Atezolizumab	SP142	Complicated	≥ 50% TC or IC ≥ 10% tumor area
NSCLC adjuvant	Atezolizumab	SP263	TPS	≥1%
NSCLC	Cemiplimab	22C3	TPS	≥ 50%

#Leai

*combo with ipilumumab

Advances in Cancer ImmunotherapyTM

Same Drug, Same Assay, but Different Scoring Cutoffs for Different Tumors

Tumor	Drug	Antibody	IHC scoring	Cutoff
NSCLC	Pembrolizumab	22C3	TPS	≥1%
H&N SCCA	Pembrolizumab	22C3	CPS	≥ 1%
TNBC	Pembrolizumab	22C3	CPS	≥ 10%

#LearnACI *combo with ipilumumab

© 2021–2022 Society for Immunotherapy of Cancer

Questions: PD-L1

- What is PD-L1 and why test for its expression?
- How do we predict which patients will respond to PD-L1 therapy?
- How is PD-L1 expression assessed?
- Why can't there be just one universal PD-L1 assay?
- What other than PD-L1 expression can predict response to PD-L1 therapy?

"Pan Tumor" FDA Approvals Checkpoint Inhibitors

dMMR or MSI-H	Pembrolizumab*	2017
dMMR or MSI-H	Nivolumab**	2017
ТМВ	Pembrolizumab*	2020
dMMR	Dostarlimab*	2021

*2nd line unresectable or metastatic solid cancers

**Progression following treatment with fluoropyrimidine, oxalplatin, irinotecan

© 2021–2022 Society for Immunotherapy of Cancer

#LearnA

Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair–Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer

Michael J. Overman, Sara Lonardi, Ka Yeung Mark Wong, Heinz-Josef Lenz, Fabio Gelsomino, Massimo Aglietta, Michael A. Morse, Eric Van Cutsem, Ray McDermott, Andrew Hill, Michael B. Sawyer, Alain Hendlisz, Bart Neyns, Magali Svrcek, Rebecca A. Moss, Jean-Marie Ledeine, Z. Alexander Cao, Shital Kamble, Scott Kopetz, and Thierry André

Tumor Mutational Burden and Response Rate to PD-1 Inhibition

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Yarchoan L et al., NEJM 377:2500-1, 2017

Effect of high TMB independent of PD-L1 Expression

Hellmann MD et al., NEJM 378:2093-2104, 2018

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

5/10-0720-1

- Your pathologist will not appreciate an isolated request for "PD-L1 testing"
- What is the tumor? What drug is being contemplated? What is the clinical setting?

Thank you for your attention!

Questions? allengown@icloud.com

© 2021–2022 Society for Immunotherapy of Cancer

#Lear