Immunotherapy Patient Forum

for the Treatment of Melanoma, Leukemia, Lymphoma, Lung and Genitourinary Cancers -November 7, 2015

What is Immunotherapy & Its Mechanisms of Action

@gulleyj1

James L. Gulley M.D., Ph.D., F.A.C.P.

Head, Immunotherapy Section Chief, Genitourinary Malignancies Branch & Director, Medical Oncology Service Center for Cancer Research National Cancer Institute, NIH

Disclosure

James Gulley has no relevant disclosures

The Immune System

- Adaptive defense system
 - protects against invading microorganisms and cancer
- Consists of two activities
 - Recognition
 - Response

Hematopoetic cell lineage

Immune system

- It is made up of many cell types.
 - Trainers / Teachers
 - Antigen presenting cells (e.g., Dendritic Cells)
 - Soldiers
 - B-cells
 - T-cells

Immune system: selective targeting

Can be trained to recognize proteins (targets) on cell surface

Make Antibodies (Cruise missiles)

Can be trained to recognize *any* protein (target) made by cell

Direct contact (Hand-to-hand) through T-cell receptor

Anatomy of the Lymphoid system

Immunotherapy: The Perfect Anti-cancer Therapy

- Ideal therapeutic should effect only on damaged / diseased cells with no impact on normal cells.
- Recognition
 - T-cells 10¹⁸ unique targets
 - B-cells 10²² unique targets
- Multiple weapons systems NO, H₂O₂, Superoxides, FasL Trail, Perforin, Granzyme, Phagocytosis, Compliment
- Mutations only add targets
- Memory response

CENTER FOR CANCER RESEARCH

How vaccines activate TAA specific T-cells

Tarassoff, ...Gulley The Oncologist, 2006

A. Degenerating tumor expresses different immunogenic targets

- Spontaneous immune response
- Induced immune response (vaccine, adoptive therapy)

B. Immature dendritic cell phagocytoses dying tumor cell along with a transfer of tumor-specific antigens

B. Immature dendritic cell phagocytoses dying tumor cell along with a transfer of tumor-specific antigens

C. Mature dendritic cells present tumor-specific antigens to T-cells

A. Degenerating tumor expresses different immunogenic targets

B. Immature dendritic cell phagocytoses dying tumor cell along with a transfer of tumor-specific antigens C. Mature dendritic cells present tumor-specific antigens to T-cells

D. Newly activated tumor-specific T-cells form in

A. Degenerating tumor expresses different immunogenic targets

B. Immature dendritic cell phagocytoses dying tumor cell along with a transfer of tumor-specific antigens C. Mature dendritic cells present tumor-specific antigens to T-cells

D. Newly activated tumor-specific T-cells form in

Antigen Cascade

Gulley JL. Therapeutic vaccines: The ultimate personalized therapy? Hum Vaccin Immunother, 2012

Immunothearpy vs. Conventional therapy

	Conventional Therapy	Immunotherapy	
Target	Tumor or its microenvironment	Immune system	
Pharmacodynamics	Often immediate action	Delayed (adaptable, may get better over time)	
Memory Response	No	Yes	
Tumor Evolution / new mutations	Resistance to therapy	New immunogenic targets	
Limitations	Toxicity	Requires adequate immune system function (both systemically and at tumor site)	

Gulley et al., ASCO Education Book, 2013

Tumor Growth Rate

Stein W, et al. *Clin Ca Res*, 2011 Madan RA, *Oncologist*, 2011

Time

T cell recognition of tumor cell

T cell function at tumor cell: to kill

T cell function at tumor cell: or not to kill

Balance in Immune System Activation

- Too little: cancer
- Too much: autoimmunity

Therapies

- Steering
 - Therapeutic Vaccines (Sipuleucel-T TVEC)
 - Adoptive Cellular Therapy (CAR-T)
- Brakes / Gas
 - Cytokines (IL-2, GM-CSF, IFN)
 - Immune Checkpoint Modulators (Ipilimumab, nivolumab, pebrolizumab)

FDA approval

Ipilimumab in Advanced Melanoma: Overall Survival

Hodi FS, et al. N Engl J Med. 2010;363:711-723.

Pooled OS Data from PhII + PhIII Trials of Anti-CTLA4 in Metastatic Melanoma: 1861 Patients

Schadendorf et al., ESMO 2013 32

Immune response capable of being:

- Rapid
- Durable
- Self propagating
- Adaptable

anti-PD1 or anti-PD-L1

34

Avelumab, an anti-PDL1 antibody (EMD Serono / Pfizer)

PR in metastatic clear cell

Baseline: 69 mm RLL lesion

Week 25: 41 mm (-40.6%)

- 65 years old; 6 prior lines for metastatic disease
- · 4th assessment cycle, still on treatment
- Safety: well tolerated (grade 1-2 rigors; grade 1 flu-like symptoms and fatigue)
- PR by RECIST ongoing at time of analysis

Courtesy of Dr. S. Ejadi, Scotsdale, AZ

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

PRESENTED AT: ASCO Annual 15 Meeting

Presented By Mary Disis at 2015 ASCO Annual Meeting

www.sugarconebiotech.com

Source: @PDRennart, pic.twitter.com/pg9UtTNfHX June 2015

Hodge et al., Oncolmmunology, 2013

Growth Rates with Combination Therapy

CENTER FOR CANCER RESEARCH

Time

Potential Multiple Effects of Local Irradiation of Tumors

CENTER FOR CANCER RESEARCH

May facilitate broader immune response - antigen spreading

Hodge ...Gulley et al., Oncology 22:1064-70.

Ē

Treatment of LnCaP Prostate Cells with Palliative Levels of ¹⁵³Sm (Quadramet) Modulates Phenotype, Upregulates TAA, and Increases Sensitivity to Antigen-specific CTL Killing

Treatment of LnCaP prostate cancer cells with palliative doses of ¹⁵³Sm results in the upregulation of MHC class I and Fas 25 gy FAS 0 Gv Cell Number 0 Gv 25 gy MHC-I 10⁰ 10 2 10 3 10 1 10 4 MFI Chakraborty, Wansley...Schlom, Hodge, NCI. Clin Cancer Res. 2008 Collaboration with Nuclear Medicine Branch

Treatment of LnCaP prostate cancer cells with palliative doses of ¹⁵³Sm results in the upregulation of TAAs

	0 G y	25 G y
PS A	1	2.7 9
PSM A	1	4.14
PAP	1	29.0
CE A	1	10.3
MUC -1	1	3.67

Treatment of LnCaP prostate cancer cells with palliative doses of ¹⁵³Sm results in increased sensitivity to multiple CTLs

¹⁵³Sm +/- PSA-TRICOM

Patient Population: CRPC Metastatic to bone

NCT00450619; PI Gulley CINJ (DiPaola) and UC (Stadler)

MEDICAL ONCOLOGY SERVICE

¹⁵³Sm +/- PSA-TRICOM: Prolonged PFS and Favorable PSA Response Profile

- Final data of n = 44 patients with mCRPC
- 1° endpoint: PFS
- Progression defined by utilizing PCWG, but not PSA criteria

PCWG = Prostate Cancer Working Group response criteria

Heery...Gulley ASCO GU 2013

Immunogenic Intensification

Schadendorf et al., ESMO 2013 44

Effect of Vaccination on Tumor PD-L1 Expression

No anti-tumor immune response for ICM to unleash

ICM can unlock / unleash ineffective underlying immune response

Gajewski T et al. Current Opinion in Immunology, 25, 1-9 2013

Effect of Vaccination on Tumor PD-L1 Expression

Similar results with LLC lung carcinoma cells

Conclusions

Key Points

- Immunotherapy is powerful and can lead to durable, adaptable responses.
- Therapeutic Vaccines and Immune Checkpoint Modulators have been FDA approved for indications such as Prostate Cancer, Melanoma and Lung Cancer with multiple other indications under late stage investigation

CENTER FOR CANCER RESEARCH

Immunotherapy can be combined with other therapies (vaccines with immune checkpoint inhibitors)

Lessons Learned

- Immunotherapy may take time to generate clinically meaningful responses
- Patients with an underlying immune response may benefit best from immune checkpoint modulators

Potential Impact on the Field

• Could be that in 10 years most cancers will be treated with immunotherapy

Examples of Therapeutic Vaccines*

- APC based vaccine (<u>Sipuleucel-T</u>, Dendreon; NW Biotherapeutics)
- Antigen Based Vaccine
 - Protein (HER2 Peoples)
 - Peptide (long vs. short)
 - DNA / RNA (<u>VBIR</u> Pfizer, <u>RNActive</u> CureVac)
 - Vector
 - Virus (Pox virus [Prostvac] BN, Adeno [ProstAtak] Advantagene, Adeno Etubics)

CENTER FOR CANCER RESEARCH

- Bacteria (Listeria [CRS-207] Aduro)
- Yeast (GI-6301, Globelmmune / Celgene)
- Whole Tumor Cell Vaccine (GVAX, Aduro)
- Oncolytic Vaccine (<u>T-Vec</u>, Amgen)

*Selected partial list for brevity, 2 agents FDA approved to date