

# SITCS SITCS



Walter E. Washington Convention Center



# Development of a next-generation sequencing-based microsatellite instability assay (MSI-NGS) for solid tumor testing

Sean T. Glenn, PhD

Vice President, Clinical and Research Development, OmniSeq, Inc.
Director, Genomic Shared Resource, Roswell Park

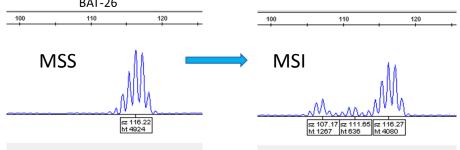
**Abstract Poster Number: P75** 



### Presenter Disclosure Information

Sean T. Glenn, PhD

#### Financial Disclosures:


- Salaried employee of OmniSeq, Inc. and Roswell Park Comprehensive Cancer Center
- Minority shareholder in OmniSeq, Inc., a subsidiary of Roswell Park Comprehensive Cancer Center





#### Microsatellites

- Short, tandem repeated DNA sequences
- Distributed throughout the genome
- Vary in length between individuals
- Used to detect MSI, a change in microsatellite length
- Failure of DNA mismatch repair system



### **MSI Clinical Implications**

- Screening test for Lynch Syndrome
- Identify appropriate patients for Immunotherapy
  - Keytruda® (pembrolizumab) approved for MSI-H patients
  - All solid tumors
  - Pediatric and adult patients





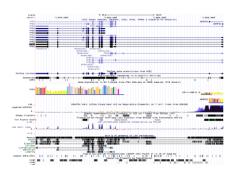


#### MSI-PCR testing - limitations

- Only 5-8 loci (Bethesda markers)
- CRC (Lynch Syndrome) focused
- Requires matched normal DNA
- Manual review of Chromatograms (inefficient)

#### MSI-NGS testing - Solution

- 29 target loci across 21 chromosomes
- Pan cancer
- Tumor only no matched normal DNA
- Automated pipeline
- Scalable workflow






# MSI-NGS Panel Development

**Genomic Target Selection** 

Illumina Assay Design

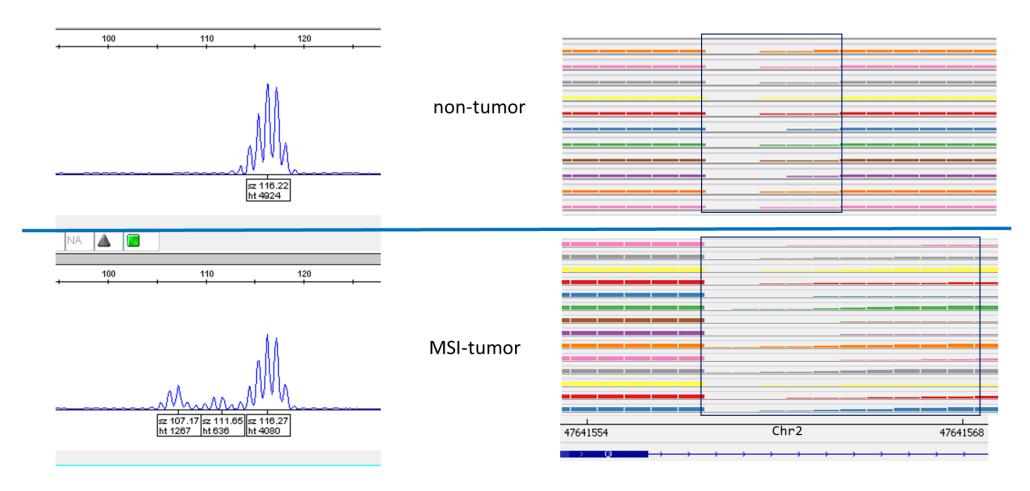


Assay
Optimization and
Pre-Validation





New York State
CLEP Validation

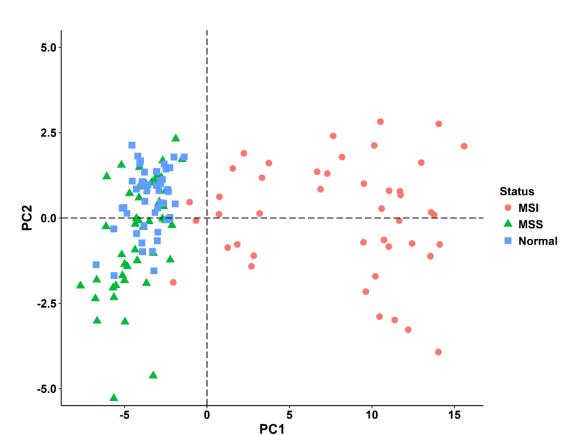

**Proposed IVD** 





## MSI-NGS Caller

Assigns MSI status by comparing target loci Indel lengths and frequency to normal reference population










# **Analytical Performance**



#### Performance of MSI method on training cohort of 94 cases

| TP | FP | TN | FN | Inconclusive | Total | Sensitivity | Specificity | PPV  | NPV  | Accuracy |
|----|----|----|----|--------------|-------|-------------|-------------|------|------|----------|
| 18 | 0  | 68 | 0  | 8            | 94    | 91%         | 100%        | 100% | 100% | 100%     |

#### Performance of MSI method on a validation cohort of 47 cases

| TP | FP | TN | FN | Inconclusive | Total | Sensitivity | Specificity | PPV  | NPV  | Accuracy |
|----|----|----|----|--------------|-------|-------------|-------------|------|------|----------|
| 22 | 0  | 25 | 0  | 0            | 47    | 100%        | 100%        | 100% | 100% | 100%     |



**NYS CLEP Approval May 2018** 







# Powerful Advancement in MSI Testing

#### Delivers microsatellite instability results from tumor only FFPE samples:

- PCR requires normal tissue, NGS does not.
- Eliminate the hassle to acquire and track matched normal DNA from tissue or blood.
- 5 20ng input tumor DNA

#### **Identify appropriate patients for Immunotherapy:**

- Pan Cancer, not just CRC
- Cost equivalent to PCR, with similar turnaround times



