
Cancer Immunotherapy Trials Network *"Update: 2019"*

(November 8, 2019)

Martin A. "Mac" Cheever MD PI: Cancer Immunotherapy Trials Network Member: Fred Hutch Professor: U of Washington <u>mcheever@fredhutch.org</u>

cancer Immunotherapy trials network

CITN: Origin

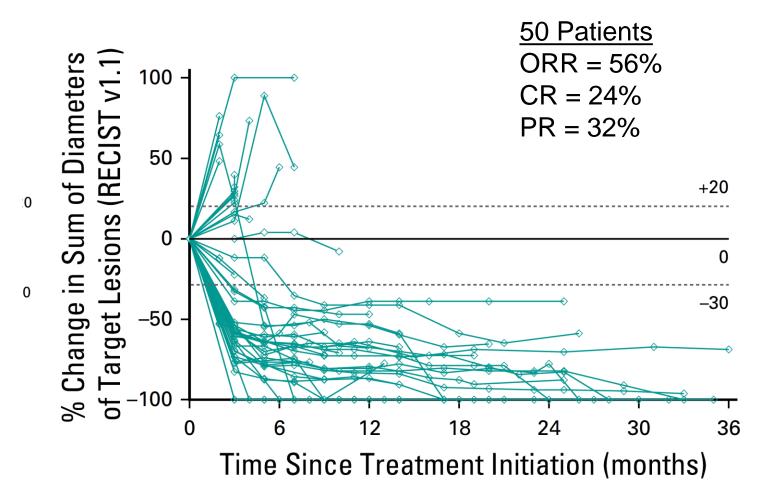
- AAI/AACR Extramural Immunology Expert Steering Committee
 - Worked with NCI to query: <u>"Why have basic scientists invented so many</u> potentially effective immunotherapy agents that are not being tested in patients?"
 - Jim Allison, Mac Cheever, Olivera Finn, Ira Melman, Drew Pardoll, Ralph Steinman
- NCI Immunotherapy Workshop (2007)
 - Prioritized: <u>Agents that could cure cancer patients if we (the field) could get</u> <u>our hands on the agents to learn how to use them!</u>
- CITN formed to bring together foremost immunotherapists to bring an essential focus on the high priority agents.

Focus on High Priority Agents Central to Effective Immune Responses

- Dendritic cell growth factor (Flt3L)
- Dendritic & APC activator (anti-CD40)
- Dendritic & APC activator (poly ICLC)
- Innate immune response activator (IFN-gamma)
- Homeostatic T-cell growth factor (IL-7)
- T-cell and NK cell activator & growth factor (IL-15)
- Checkpoint inhibitor (anti-PD1)
- Agent to inhibit suppressive enzymes (IDO inhibitor)

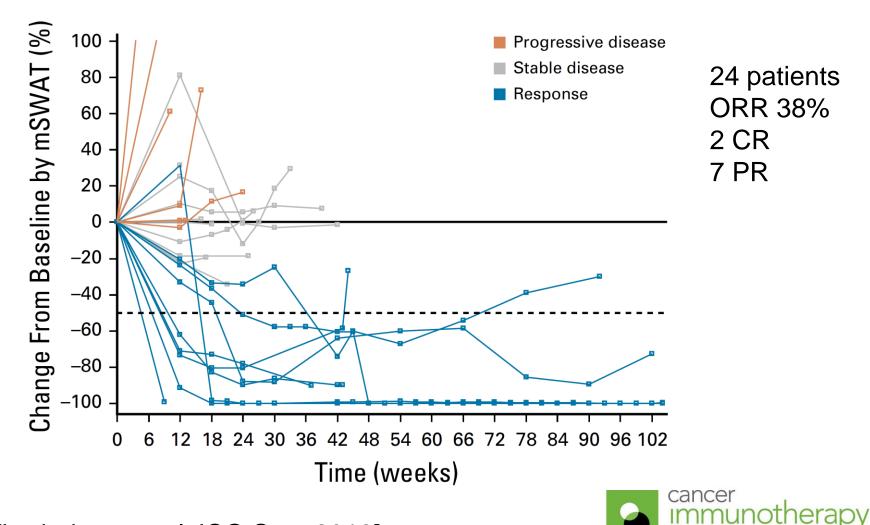
"Building Blocks for Constructing Effective Immune Responses"

Remarkably few academic initiated trials except anti-PD1/PD-L1


Progress: CITN Trials with 8 Core Agents

- <u>Changed standard of care with anti- PD1</u> (4 diseases)
 - Merkel Cell carcinoma
 - Mycosis fungoides/Sezary Syndrome
 - Advanced cancer with HIV
 - Pancreas cancer (by extrapolation)
- Established or confirmed pharmacodynamics (5 agents)
 - IL-7
 - IL15
 - IL15:IL15Ra-Fc
 - Flt3L
 - IDO inhibitor

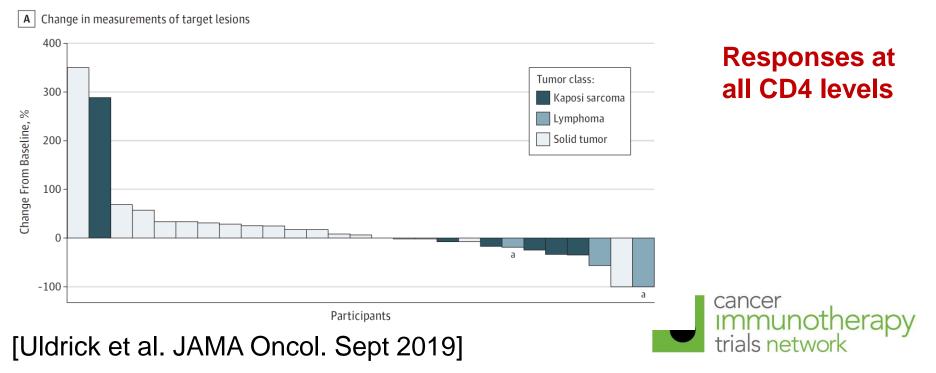
- <u>Established doses for taking</u> <u>forward in combination regimens</u> (6 agents)
 - IL-7
 - IL-15
 - IL-15:IL-15Ra-Fc
 - Flt3L
 - Anti-CD40
 - IFN-gamma
- <u>Motivated several companies to develop agents</u> (3 agents)
 - IL-7
 - IL-15
 - Flt3-L


CITN-09: Advanced Merkel Cell Carcinoma Receiving Pembrolizumab as First-Line Therapy

[Nghiem et a, JCO Feb 2019]

CITN-10: Pembrolizumab in Relapsed & Refractory Mycosis Fungoides and Sézary Syndrome

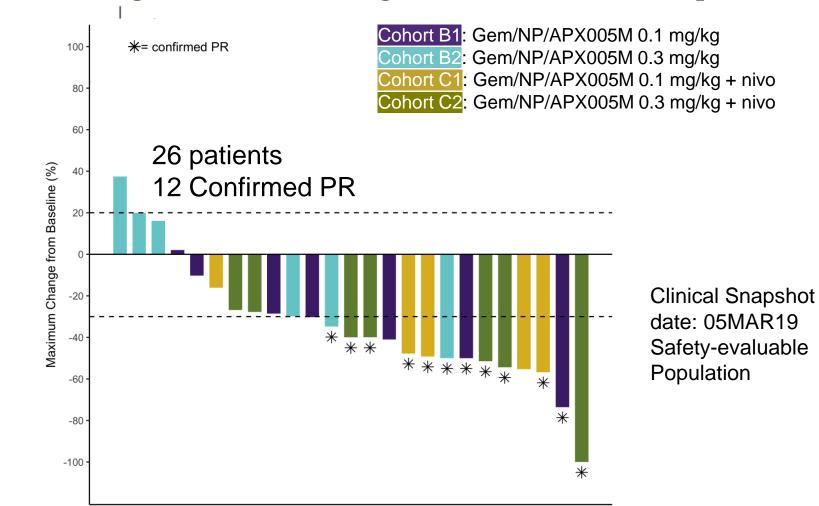
trials network


[Khodadoust et al JCO Sept 2019]

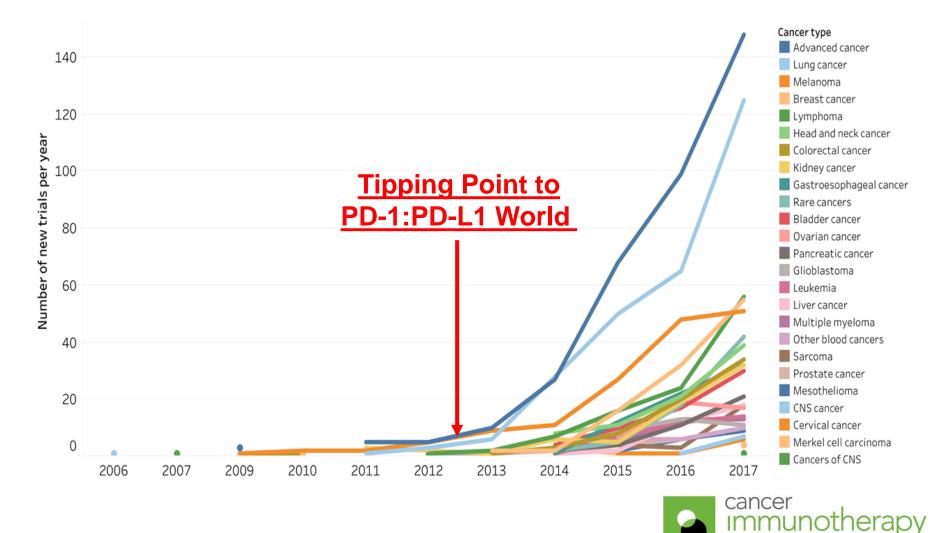
CITN-12: Assessment of the Safety of Pembrolizumab in Patients With HIV & Advanced Cancer

30 Patients (3 CD4 level cohorts) 6 Kaposi sarcoma (KS), 5 non-Hodgkin lymphoma (NHL) 9 non-AIDS-defining cancers.

Safety was observed over 183 cycles of pembrolizumab


One participant with pretreatment KS herpesvirus (KSHV) viremia developed polyclonal KSHV-associated B-cell lymphoproliferation & died.

Parker Institute Trial:


<u>Vonderheide/CITN/SU2C Regimen (anti-CD40 + Gemcitabine + nab-Paclitaxel)</u> with or without Nivolumab for Untreated Metastatic Pancreatic Ductal Adenocarcinoma

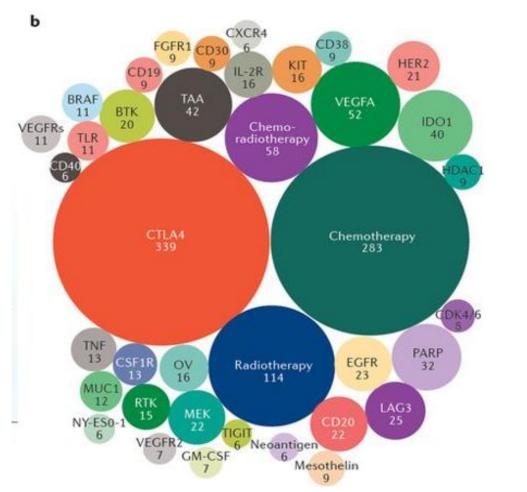
Percent Change in Sum of Target Lesions (Best Response)

Evolution of PD-1/PD-L1 trials by different

cancer type

trials network

[Tang et al. Nat Rev Drug Discov. Nov 28;17(12) 2018]


Anti-PD1 & anti-PD-L1: The Core of Cancer Immunotherapy as single agents

- <u>Objective tumor regressions (single agent):</u>
 - Hodgkin lymphoma (65-87%)
 - Merkel cell Ca (32-64%)
 - Melanoma (17-50%)
 - Lung cancer (10-30%)
 - Kidney cancer (12-29%)
 - Bladder cancer (15-30%)
 - Head & neck cancer (20-25%)
 - Colon with many mutations (~50%)
 - Liver Ca (~15%)
 - Gastric Ca (~15%)
 - Ovarian cancer, nasopharyngeal Ca, TNBC, mesothelioma, ...

Original AAI/AACR Extramural Immunology Expert Steering Committee Question Leading to CITN - **RESOLVED**

- Why have basic scientists invented so many potentially effective immunotherapy agents that are not being tested in patients"
- 240 agents in 1,716 PD-1 combination trials (2018)

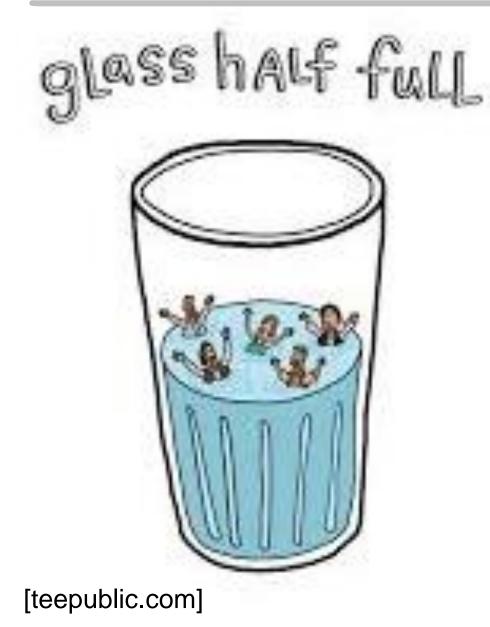
Number of clinical trials are indicated by size of bubble

[Tang et al. Nat Rev Drug Discov. Nov 28;17(12) 2018]

Targets in \geq 6 PD-1 combination trials

339	CTLA4	16
283	Chemotherapy	15
114	Radiotherapy	13
58	Chemo-	13
radio	otherapy	12
52	VEGFA	11
42	ТАА	11
40	IDO	11
32	PARP	9
23	EGFR	9
25	LAG3	9
22	CD20	9
22	MEK	9
21	HER2	9
20	ВТК	8
16	KIT	7
16	IL-2R	[From: Ta

16	OV
15	RTK
13	CSF1R
13	TNF
12	MUC1
11	BRAF
11	TLR
11	VEGFRs
9	CD19
9	CD30
9	CD38
9	FGFR1
9	HDAC1
9	Mesothelin


- 3 CDK4/6
- GM-CSF

- 7 VEGFR2
- 6 <mark>CD40</mark>
- 6 CXCR4
- 6 Neoantigen
- 6 NY-ES)-1
- 6 TIGIT

[From: Tang et al. <u>Nat Rev Drug Discov.</u> & clinictrials.gov]

Despite Responses with Anti-PD-1 Single Agents & Combinations, Most Don't Respond or Relapse

 Patients on anti-PD-1 combinations with growing tumors are likely the commonest single category of patient

CITN Goals: (1) Identify Actionable Causes of PD1 Failure, (2) Develop Panel of Agents Effective for Specific Causes of Failure

• CITN "Template" trial sequence

- 1. Biopsy to assess possible actionable causes of failure
- 2. Continue anti-PD1/PD-L1
- 3. Administer putative "rescue" agent(s)
- 4. Timed biopsy to assess agent biological activity
- 5. Follow clinical response to determine whether changes in tumor result in patient benefit

CITN Goals: (1) Identify Actionable Causes of PD1 Failure, (2) Develop Panel of Agents Effective for Specific Causes of Failure

• CITN "Template" trial sequence

- 1. Biopsy to assess possible actionable causes of failure
- 2. Continue anti-PD1/PD-L1
- 3. Administer putative "rescue" agent(s)
- 4. Timed biopsy to assess agent biological activity
- 5. Follow clinical response to determine whether changes in tumor result in patient benefit

Initial "Rescue" Agent Trials (to begin accrual momentarily)

- IL-7 Tumors with too few T cells
- IL-2/IL-15 Tumors with too few activated T cells
- TGFb inhibitor Tumors with TGFb signature

CITN Goals: (1) Identify Actionable Causes of PD1 Failure, (2) Develop Panel of Agents Effective for Specific Causes of Failure

• CITN "Template" trial sequence

- 1. Biopsy to assess possible actionable causes of failure
- 2. Continue anti-PD1/PD-L1
- 3. Administer putative "rescue" agent(s)
- 4. Timed biopsy to assess agent biological activity
- 5. Follow clinical response to determine whether changes in tumor result in patient benefit

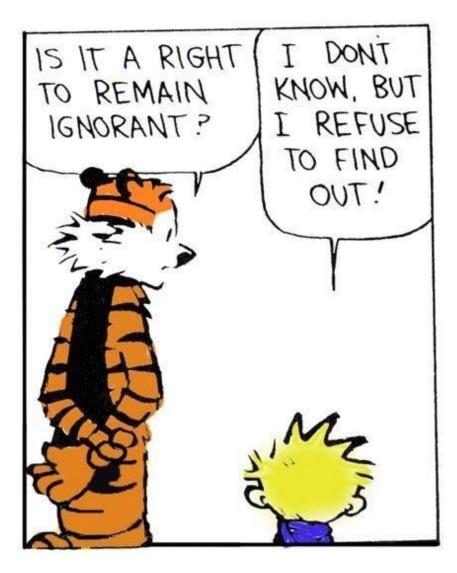
Initial "Rescue" Agent Trials (to begin accrual momentarily)

- Agent Putative Role
- IL-7 Tumors with too few T cells
- IL-2/IL-15 Tumors with too few activated T cells
- TGFb inhibitor Tumors with TGFb signature
- 237 other agent possibilities with CITN prioritization based on functions central to effective immune response

Three Pediatric Trials in Development

Checkpoint inhibition

- Identify children with anti-PD1 responsive cancers
 - Anti-PD1 Combination Immunotherapy in Children, Adolescent and Young Adult Patients with Relapsed/Refractory Hypermutant Cancers
- Synthetic immunity
 - GD2-CAR T Cells for sarcoma and neuroblastoma
 - Anti-CD47 plus anti-GD2 in Children with Relapsed and Refractory Neuroblastoma and Osteosarcoma to facilitate infiltrating macrophage function


Foreseeable Future

- Majority of patients with advanced cancer will be treated with combinations of current standard of care plus anti-PD1/PD-L1
- Combinations will increase responses & survival, but most will relapse
 - Development of regimens to rescue failures is perhaps the greatest opportunity for academic trials to contribute substantively to patient benefit

Thanks!!!

- Patients Past, current & future!
- CITN Site PIs & Investigators
- SITC Presidents
 - Bernie Fox
 - Tom Gajewski
 - Franco Marincola
 - Howard Kaufman
 - Lisa Butterfield
 - Mario Sznol
 - Tara Withington Executive Director
- CTEP
 - William Merritt ex Project Officer
 - Percy Ivy Project Officer
 - Malcolm Smith Project Officer
 - Howard Streicher Senior Investigator
 - Elad Sharon Senior Investigator

