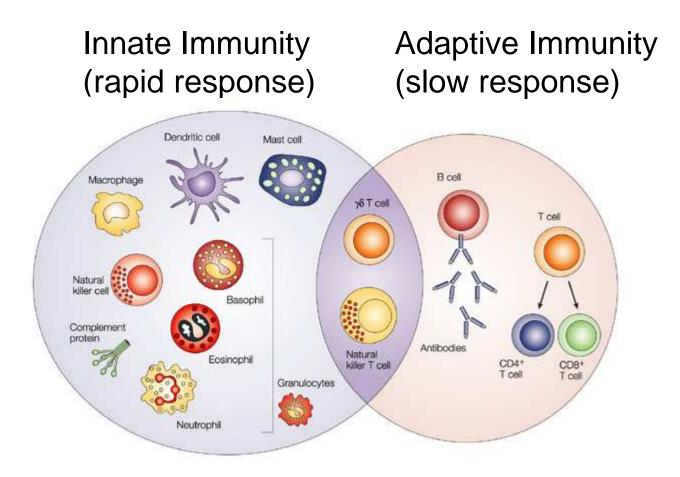


Current Status of Chimeric Antigen Receptor (CAR) T Cell Therapy

City of Hope Comprehensive Cancer Center

Stephen J. Forman, M.D. Chair, Department of Hematology/HCT Director, T Cell Therapeutics Research Laboratory



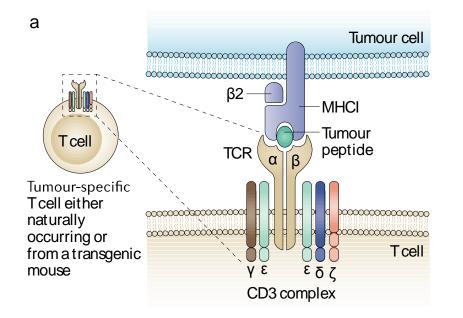
Disclosure

- Intellectual property and patents in the field of CARengineered T-cell therapy.
- License agreement with and receive research support from Mustang Therapeutics, Inc.
- Conflicts of interest have been reviewed and approved by City of Hope in accordance with its conflict of interest and commitment policy.
- There will be discussion about the use of products for non-FDA approved indications.

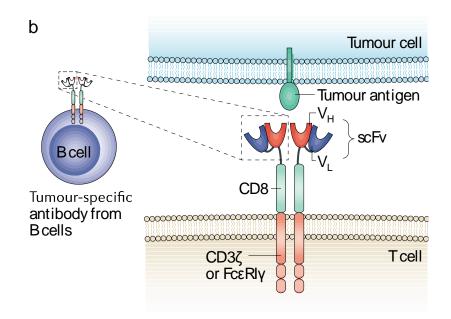
Human Immune System

Nature Reviews | Cancer

Harnessing the Potency & Specificity of T Cells for Cancer Therapy


CYTOTOXIC T-LYMPHOCYTE

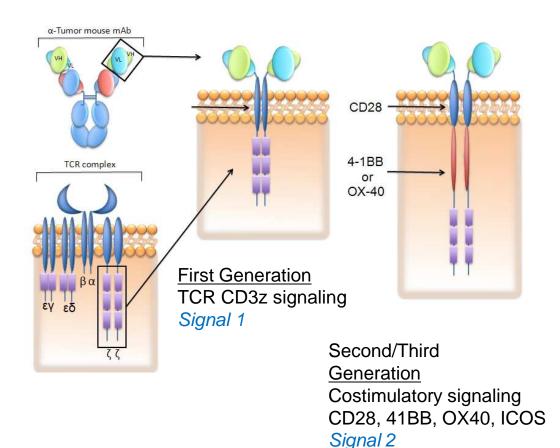
A specialized white blood cell responsible for eliminating unwanted body cells (e.g. cancer) kills a cell infected with the influenza virus



Engineering T cell Immune Responses

TCR-engineered T cell Therapy

CAR-engineered T cell Therapy

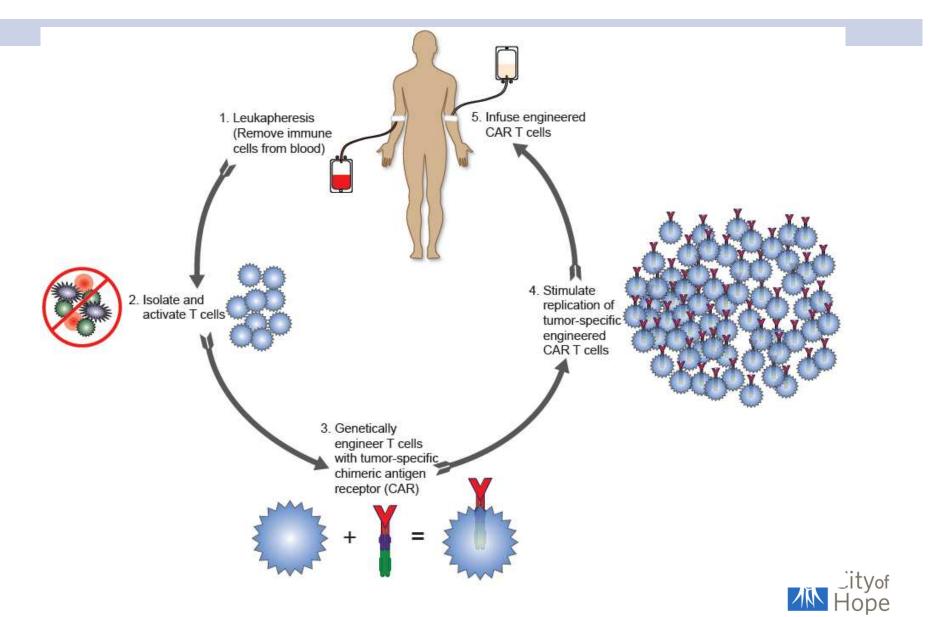


Advantages CAR T cells

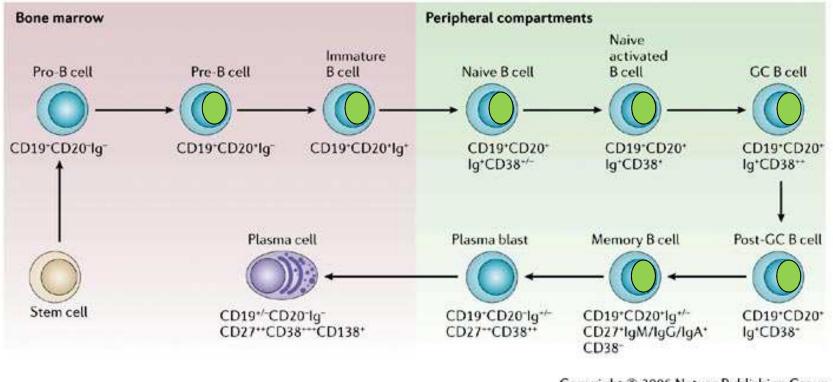
- 1. Direct attacking of tumor-associated antigens
- 2. MHC-independent
- 3. Less opportunity for immune escape

Chimeric Antigen Receptor (CAR) T Cell Therapy

Advantages of CARs


- Modular design
- •MHC independent
- •Functional in both CD4 and CD8 T cells
- •Significant numbers of tumor specific T cells can be rapidly generated
- •The potential to generate novel long-term antitumor immunity

Challenges


- •Single antigen specificity
- •Primarily restricted to extracellular antigens
- •On-target and off-target toxicities

Adoptive Therapy using CAR-Engineered T cells

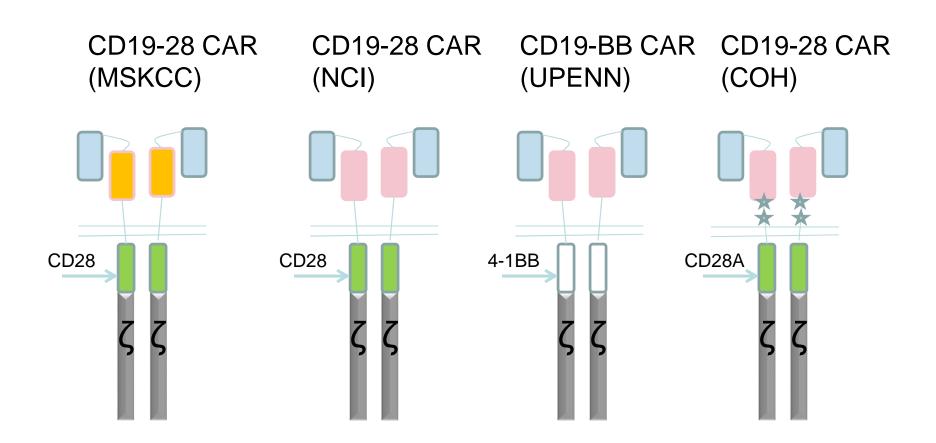
CD19 & CD20 Expression during B cell development

Copyright © 2006 Nature Publishing Group Nature Reviews | Immunology

Edwards et al. Nature Reviews Immunology 6, 394-403 (May 2006) | doi:10.1038/nri1838

CD19CAR

The first CAR with demonstrated clinical benefit


➢It is an ideal immunologic target for B cell malignancies

>30 CD19CAR clinical trials

➤CD19CAR (CTL019) by UPENN received breakthrough therapy designation for adult and pediatric ALL from the FDA in 7/2014

CD19 CARs

Trial Design (example)

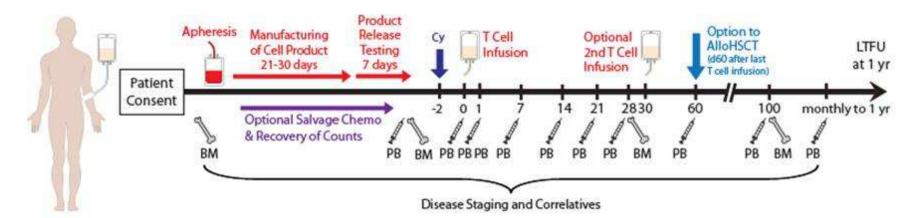
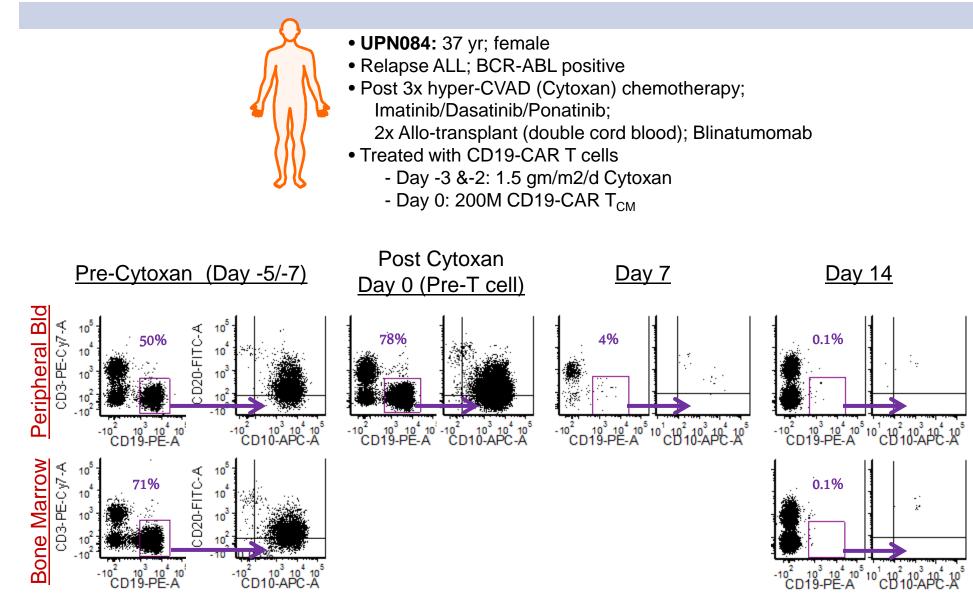



Figure S1. T cell product manufacturing and patient treatment plan. Cy=cyclophosphamide, AlloHSCT-allogeneic hematopoietic stem cell transplantation, BM=bone marrow aspiration/biopsy, PB=peripheral blood for correlative assays, LTFU=long term follow up

Clinical Potential of CD19-CAR T Cell Therapy

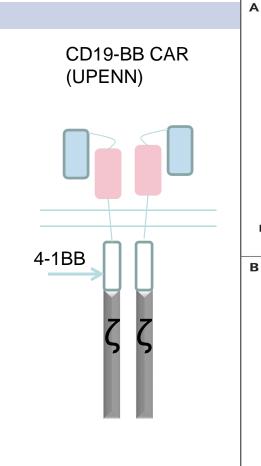
CD19CAR T Cell Trials

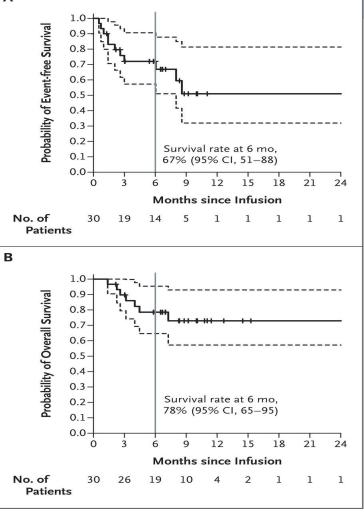
CAR T cells	19-28z MSKCC	FMC63-28z NCI	FMC63-BBz UPENN
Number of pts	16	21	25 (ped); 5 (adult)
Ages	50 (18 - >60)	5 - 25	11 (5-22); 47 (26-60)
Prior allo	4 (25%)	8 (38%)	18 (72%); 0 (6 mos)
refractory	14 (88%)	8 (38%)	0; 3 (60%)
MRD-ve	2	0	5 (20%); 0
MRD+ve	5	5	0; 1
Blasts > 50%	6	8 (50 to 96%)	n/a
CSF	2	2, CNS-2 (asx)	2, CNS-2 (asx)

Davila ML et al. Science Trans Med 2014; Lee DW et al. Lancet 2014; Oct 10 Maude SL et al. NEJM 2014; Oct 16

CD19 CAR T Cell ALL Trials

CAR T cells	19-28z MSKCC	FMC63-28z NCI	FMC63-BBz UPENN
Lymphodepletion	Cy 1.5 – 3 g/m2	Flu 25mg/m2/d d- 4, -3, -2, Cy 500mg/m2 d-	D-2 to -6, cy/vp, flu/Cy, Cy, clof, vp/arc
		2	CVAD-B, CVAD-A none (3, cytopenia)
T cell expansion	n/a	11 days	8 – 12 days
feasibility	15/16	19/21	N/A
T cell dose	3 x 10 ⁶ /kg	1 to 3 x 10 ⁶ /kg	1-10 x 107TC/kg /1 - 3 days;
T cell persistence	30 days (0 – 120)	Up to 58 days	24 months (n=1)
CAR in CSF		11/17	17/19




CD19CAR T Cell ALL Trials

Study	N (Evalu able)	CR (MRD -)	Time to CR (day)	Proceed to Allo	Outcome p allo
Penn ped	39	92%	<28	3/12	3/3 CR 4-15 mo
Penn adult	12	66%	<28	4/12	3/4 CR alive
NIH (Lee)	21 (ped +YA)	67%	<28	10/13	10/10 CR
MSK (Park)	33 (27)	89% (88%)	22.5	10/20	8/10 CR 3 - 8 mo 1 CD19-ve relapse
FHCRC	15 (13)	82%	n/a	0	

Probability of Event-free and Overall Survival at 6 Months.

Maude SL et al. N Engl J Med 2014;371:1507-1517

N = 30 at 1 month, 27 (90%) CR 22/27 MRD - ve 3/27 MRD +ve 2 not available

> at median f/u 7 months 19 remains in CR 15 no further Tx

Summary

- ✓ CD19CAR T cell mediates potent anti-leukemic effect
- Response does not correlate with CD19 expression density
- ✓ High CNS penetration
- Post treatment relapse are due to early loss of CD19CAR T cells generation of CD19-variants.

B Cell Aplasia

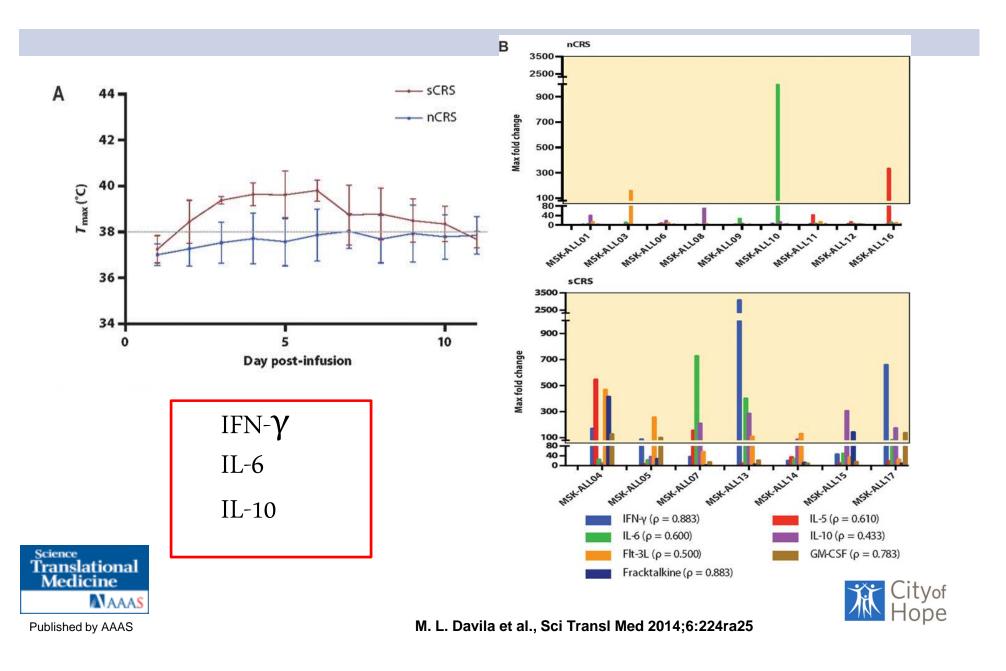
On target, off tumor effect

CD19 expresses throughout normal B cell development

Clinical outcome

-indicator for CD19CAR T cell persistence and response
-hypogammaglobulinemia (serum IgG < 400 or 500 mg/dl)
-No significant increase of severe infection

Management


-IVIG replacement if IgG less than 400 mg/dl

- A constellation of inflammatory symptoms from cytokine elevations.
- Association with T cell activation and proliferation in T cell-engaging therapies.
- Association with clinical benefit.
- CRS-related death reported after Blinatumomab and CAR T treatment.

Fig. 1. Characteristics of the CRS.(A) Average max temperatures on days 1 to 11 after CAR T cell infusion in patients with sCRS compared to nCRS patients

CRP is a Good Biomarker for CRS Syndrome

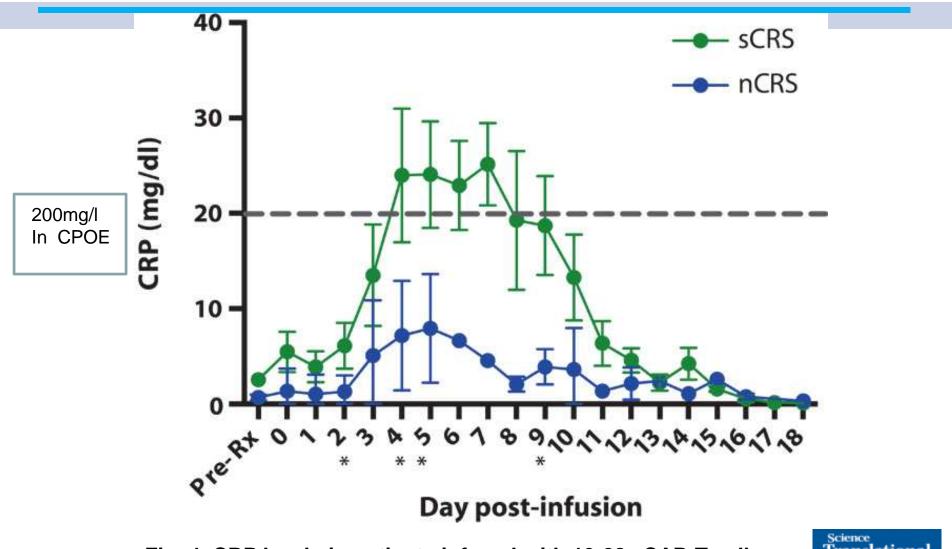
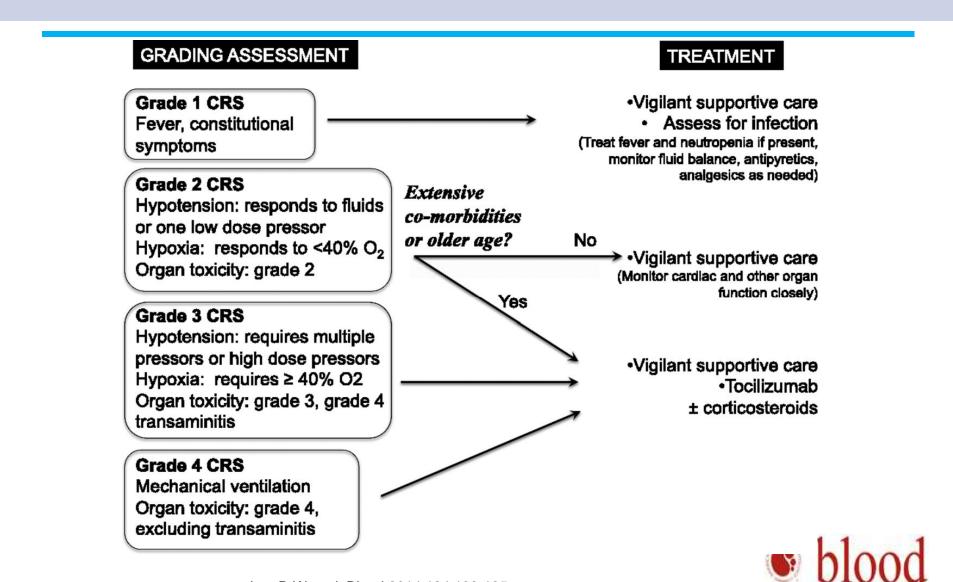


Fig. 4. CRP levels in patients infused with 19-28z CAR T cells.



M. L. Davila et al., Sci Transl Med 2014;6:224ra25

Clinical Signs and Symptoms Associated with CRS

Organ system	Symptoms
Constitutional	Fever \pm rigors, malaise, fatigue, anorexia, myalgias, arthalgias, nausea, vomiting, headache
Skin	Rash
Gastrointestinal	Nausea, vomiting, diarrhea
Respiratory	Tachypnea, hypoxemia
Cardiovascular	Tachycardia, widened pulse pressure, hypotension, increased cardiac output (early), potentially diminished cardiac output (late)
Coagulation	Elevated D-dimer, hypofibrinogenemia \pm bleeding
Renal	Azotemia
Hepatic	Transaminitis, hyperbilirubinemia
Neurologic	Headache, mental status changes, confusion, delirium, word finding difficulty or frank aphasia, hallucinations, tremor, dymetria, altered gait, seizures
Lee DW et al. Blood 20	14

Treatment Algorithm for Management of CRS Based on the Revised CRS Grading System.

Lessons Learned from CD19-CAR T cell Therapy

CD19-CAR T cells mediate impressive clinical efficacy against CD19-malignancies across institutions, CAR designs, manufacturing platforms and trial designs.

Complete response rates are reported for 66-90% of patients with ALL (Davila et al, STM, 2014; Maude et al. NEJM. 2014; Lee et al. 2015.

CAR T cell antitumor activity is often associated with toxicities that if not properly managed are life-threatening.

- •Cytokine release syndrome (CRS) and neurotoxicity: clinically managed with corticosteroids and anticytokine therapy (i.e. tocilizumab).
- B cell Aplasia: clinically managed with intravenous immunoglobulin (IVIG).

*Not all patients respond to CD19-CAR therapy and the long-term durability is still being evaluated.

- Differences in response rates between leukemia versus lymphoma highlight tumor-specific challenges.
- Relapse of CD19 antigen negative ALL is observed.
- •Therapeutic efficacy correlates with level of CAR T cell persistence and expansion.

Engineering CD123specific CAR T cells for the Treatment of Acute Myeloid Leukemia

Research Team

Armen Mardiros Ravi Bhatia Cedric Dos Santos Tinisha McDonald

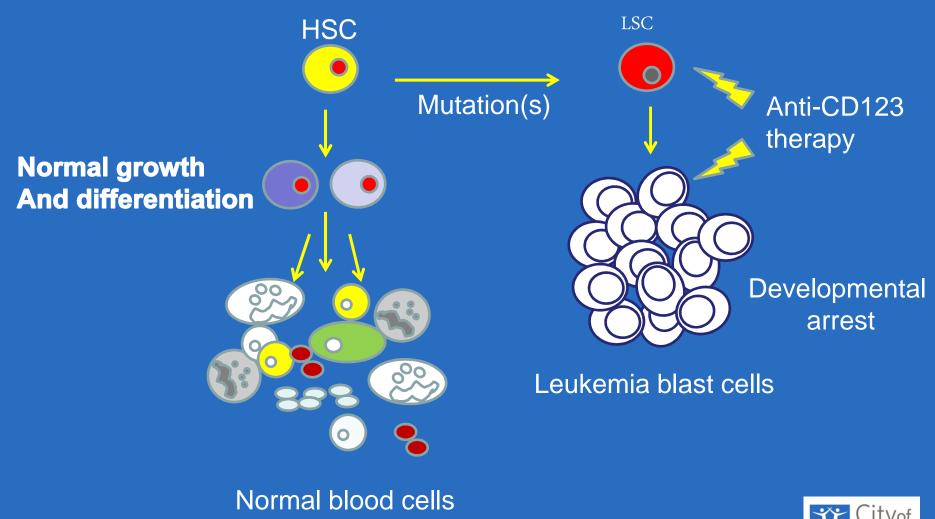
Regulatory Team

Jamie Wagner Anita Kurien Julie Ostberg Sandra Thomas COH OIDRA

Clinical Team

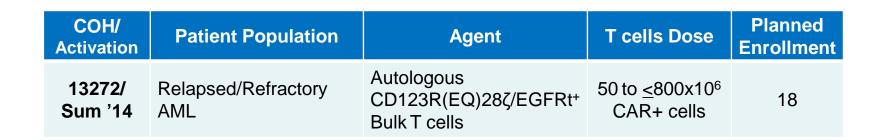
Elizabeth Budde Stephen Forman

- The interleukin-3 receptor α chain (CD123) is over-expressed on AML cells compared to normal adult bone marrow (Jordan CT et al Leukemia 2000)
- Two phase I trials (CSL360 and SL-401) have been completed (NCT00401739 and NCT00397579)



CD123 expression on AML patients

AML Sample ID	Age/Sex	Cytogenetics	Clinical status	Sample Type	CD123 (RFI)	CD34+ selected %CD123+
179	74/M	Intermediate-risk t(1;7), t(14;15)	Relapsed	PB	428.32	99.22
373	47/M	Poor-risk, Complex abnormalities in 3 cell lines	Relapsed	PB	1052.83	99.66
493	46/F	Intermediate-risk Trisomy 8	Relapsed	PB	23.98	76.80
519	44/F	del(17p), dic (11;7), clonal loss of TP53/17p13.1	Relapsed	PB	63.18	97.40
545	58/M	Intermediate-risk t(3;6), del(7)	Induction failure	PB	52.73	99.32
559	59/M	Complex abnormalities, Massive hyperdiploidy	Relapsed	Apheresis	9.30	45.0
605	55/M	Normal	Persistent	PB	58.48	99.91
722	22/M	Intermediate risk t(14;21), del(9q)	Untreated	PB	33.53	92.74
813	48/F	Complex abnormalities, Trisomy 8, Trisomy 21, add(17)	Untreated	PB	37.19	90.93



Therapeutic Concept

Cityof Hope

Phase I Clinical Trial with CD123-specific CAR T cells to Initiate in 2015

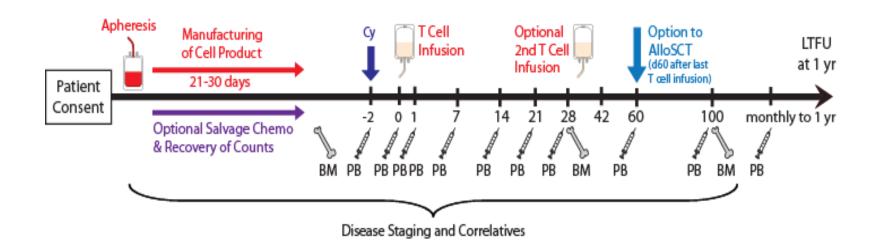


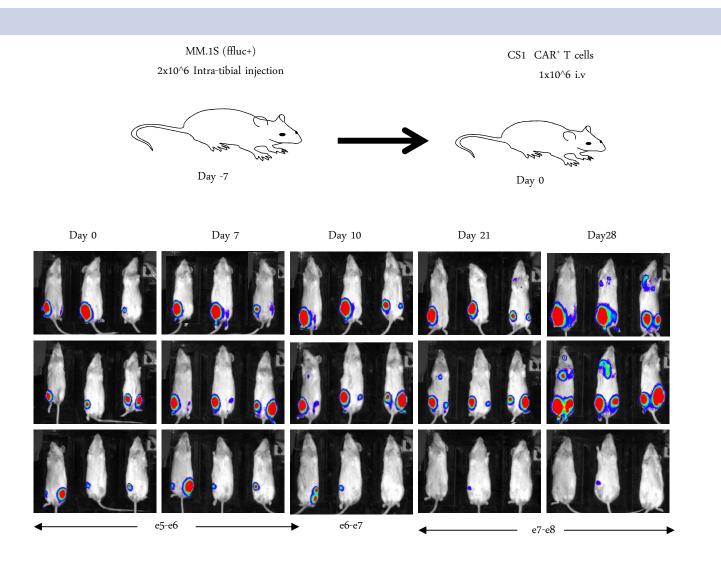
Figure S.1. T cell product manufacturing and patient treatment plan. Cy=cyclophosphamide, Rtx=rituximab, BM=bone marrow aspiration/biopsy, PB=peripheral blood for correlative assays, LTFU=long term follow up

Multiple Myeloma (MM)

•Multiple myeloma (MM), a plasma cell malignancy, accounts for slightly more than 10 percent of hematologic malignancies in the United States

• Current therapies for MM often induce remission, but nearly all patients eventually relapse. Over 11,000 people die from this disease/year.

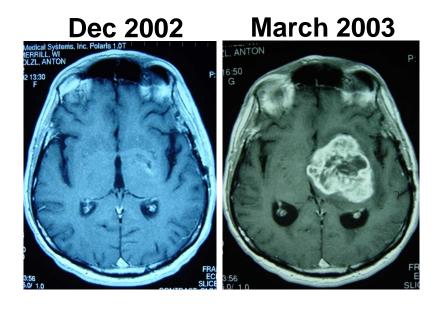
•T-cell mediated anti-tumor therapies using genetically modify T cells with specific chimeric antigen receptors (CARs) have non-overlapping activity, toxicity and tumor resistance profiles compared to conventional chemotherapeutic agents.


CAR Re-directed T Cell Therapy for Multiple Myeloma

	CS-1	CD44v6	BCMA
Known as	(SLAM)	Variant 6 of CD44	necrosis factor receptor superfamily member 17 (TNFRSF17) or CD269
Function	the signaling lymphocyte activation	cell adhesion and signaling, tumor invasion, and tumor dissemination (stem cell nich)	B cell development and maturation by binding B cell activating factor (BAFF) and a proliferation ligand
Antigen expression	Normal plasma cells and MM; Low on NK cells	AML, MM; low on monocytes and keratinocytes	Normal plasma cells and MM
Targeted therapy with mAb	Yes	Yes	No
CAR study	Pre-clinical	Pre-clinical	Phase I trial
			Cityo

Which one is the best target?

In vivo antitumor efficacy of $T_{\rm CM}$ derived CS-1 CAR T cells

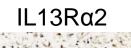


Do CAR T cells offer promise for treatment of solid cancers?

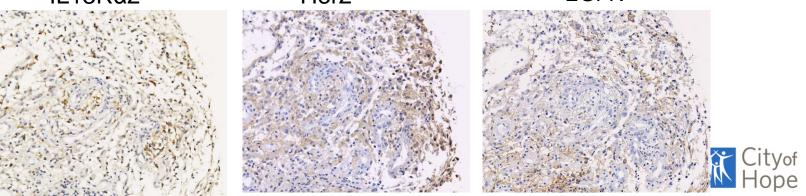
CAR T cell Therapy for the Treatment of Glioblastoma

Glioblastoma (GBM) is the most aggressive primary brain tumor, and one of the least curable of all human cancers with a 5-year survival rate of <10%.

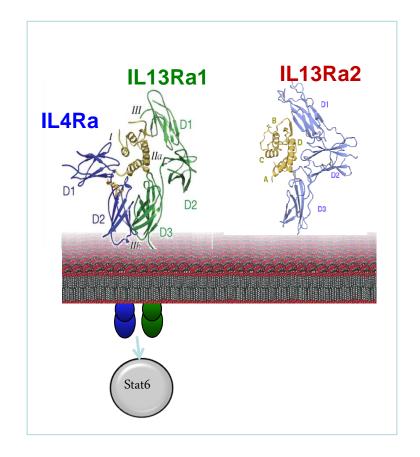
Challenges for GBM Therapy


- Invasiveness
- Heterogeneity
- Blood-brain barrier prevents penetration of many chemotherapies
- Standard therapies (surgery, radiation, and chemotherapy) are ineffective and may cause injury of this critical and highly sensitive organ

Can CAR T cell therapy offer promise over standard therapy by reprogramming an antitumor immune response?


Glioma Antigen Selection for CAR T Cell Therapy

Target	GBM	Normal Brain	Clinical	Clinical Details
IL13Rα2	+++		COH; NCT02208362	IL13BBζ-CAR Tcm i.c. delivery
EGFR	++++	++		
EGFRvIII	++++		NCI; NCT01454596 UPenn; NCT02209376	CD28-41BBζ-CAR ; i.v. delivery 41BBζ-CAR ; i.v. delivery
HER2	+++		Baylor; NCT02442297	CD28ζ-CAR CMV+ T cells i.v. delivery
EphA2	++		China; NCT02575261	Unknown


Her2

EGFR

IL13Rα2: An Immunotherapeutic Target for GBM

- IL13Rα2 is a high-affinity IL-13 receptor.
- IL13Rα2 is over-expressed by the majority of high-grade glioma.
- IL13Rα2 is also expressed by other solid tumors (ovarian, colorectal, pancreatic, kidney etc)
- IL13Rα2 is associated with tumor invasion and metastasis, and poor patient survival.
- IL13Rα2 displays low/negative expression on normal tissue expression, except for testis.
- IL13Rα2 is distinct from a second IL-13 receptor, IL13Rα1, which requires heterodimerization with IL-4Rα for high affinity binding of IL-13.

Phase I Clinical Trials Utilizing CD8⁺ IL13-zetakine⁺ T cells for the Treatment of Recurrent Glioblastoma

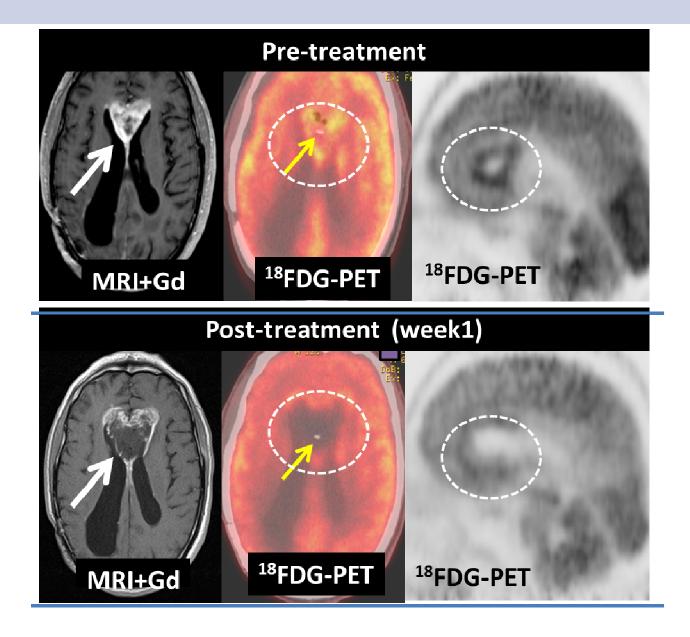
Behnam Badie, M.D.; Clinical PI

GBM1 -- BB-IND 10109 / IRB 1020: Patient Specific Autologous CAR T cell

- Patients: 3
- •<u>Infusions</u>: 12 @ 1x10⁷-10⁸
- CAR: 1st generation IL13-zetakine CAR
- <u>T cell:</u> CD8+ CTL clone
- <u>SAEs:</u>headache, transient neurological worsening

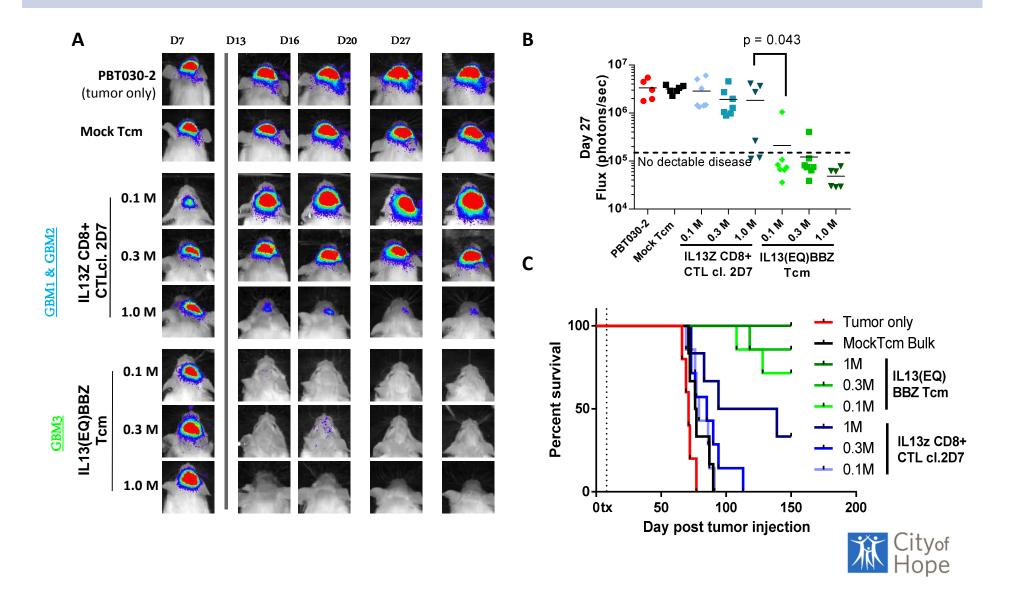
GBM2 -- BB-IND 14194 / IRB 07082 "Off-the-Shelf" Allogeneic CAR T cell

- Patients: 6
- Infusions: 4 @ 1x10⁸, 2500-500 IU IL-2;
- CAR: 1st generation IL13-zetakine CAR
- <u>T cell:</u> Steroid resistant CD8⁺ CTL line
- <u>SAEs:</u> dehydration, stroke

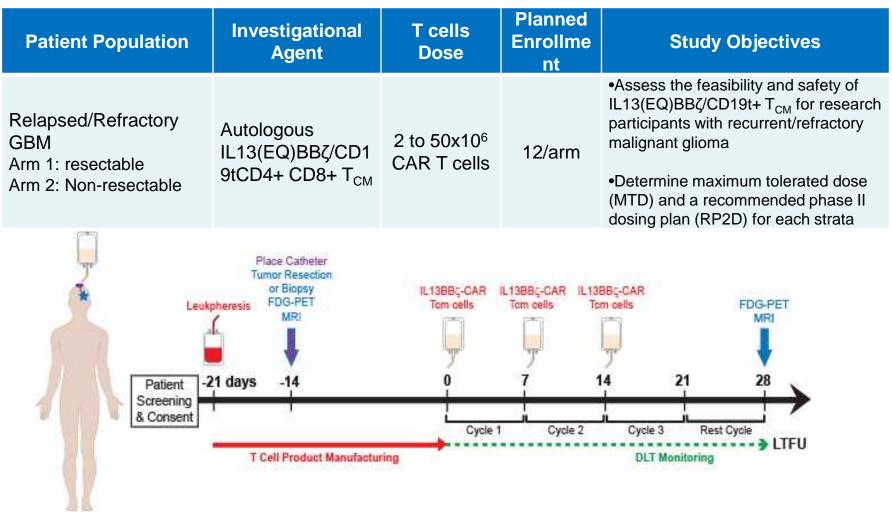

Collaboration Sangamo BioSciences

<u>Lessons Learned</u>

- Feasibility of engineering autologous and allogeneic CAR T cells for GBM therapy.
- Safety of IL13Rα2-specific CAR T cells for GBM therapy.
- Tolerability of up to 12 T cell infusions at cell doses of 1x10⁸ and co-administered of IL-2 i.c.
- Evidence for transient antitumor activity.



Transient Regression of a GBM Lesion Following First-Generation Allogeneic CD8⁺ IL13ζ⁺ T cell Therapy



Next-Generation IL13BBz CAR T_{CM} Are More Potent than First-Generation CD8+ IL13z T cells

Phase I Clinical Trial Evaluating Next-Generation IL13Rα2-specific CAR T cells

Clinical PI: Dr. Behnam Badie

Funding: Gateway for Cancer Research; R01-FD005129-01

Major hurdles for the development of solid cancer CAR T cells

(1) Tumor-antigen expression (outside of CD19) is not wholly restricted to tumors, but also found at *lower* levels on normal tissue

- Potential for increased off-tumor, on-target effects

(2) The solid tumor microenvironment is uniquely immune-suppressive

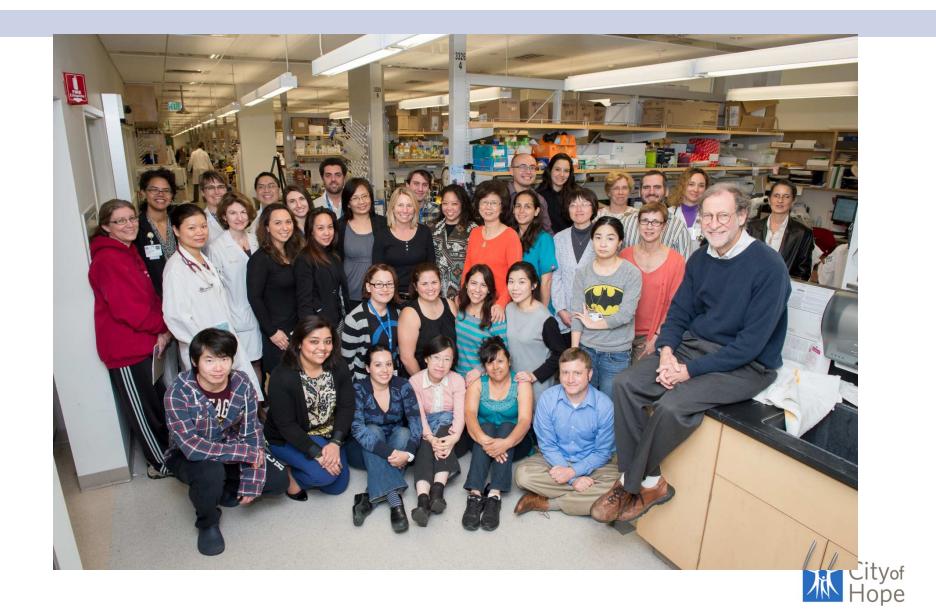
- Blocks T cell infiltration, activation/function, and proliferation
- Hampers overall efficacy of endogenous T cell immunity and adoptive T cell therapies

Solid Cancer CAR T Cell Therapy

- Can CAR T Cells Be Tumor-Antigen Expression Selective?
 - Optimize CAR constructs/components (i.e. co-stimulatory domains, nonsignaling linker domains, scFv's, etc.) to develop truly expressionselective CARs
 - Goal: Target over-expressed tumor antigens, while avoiding tissue with "normal" low antigen expression
- Can we design rational combinations using CAR T cells with blockade of immunosuppression?
 - Develop therapies to target the suppressive microenvironment
 i.e. CpG-STAT3 siRNA, PD-1/PD-L1 checkpoint inhibitors, MDSC and Treg-specific inhibitors

Future Implications for Developing CAR T Cells for Cancer

✓ Address Tumor Heterogeneity


Can we overcome tumor heterogeneity by BOXING IN antigen escape with multi-targeting CAR T cells

- PSCA, Her2, IL13Ra2, etc.
- ✓ Overcome Suppressive Microenvironment Can we neutralize the fibro-inflammatory stromal microenvironment to augment CAR T cell therapy
 - Target STAT3-mediated inflammation
 - Combine with other therapies (MDSC, CAFs)
- *Tumor specificity (off-tumor effects)* Determine the optimal starting T cell population

 - CAR domain optimization for differential target selectivity
 - Suicide gene approach to manage potential toxicity

COH T Cell Therapy Research Program

