Cancer Biometrics: Results of the 2003 iSBTc Workshop

Theresa L. Whiteside, Ph.D., ABMLI University of Pittsburgh Cancer Institute

The workshop objective

The objective was to consider state-of-theart approaches to the identification of biomarkers and surrogate markers of tumor burden with the emphasis on assays in the blood, lymph nodes and within the tumor itself

Surrogate end-points

- Definition: end-points other than overall survival used to make conclusions or predictions about cancer progression/regression or responses to therapy
- Disease related:

Histologic markers: dysplasia, hyperplasia, CIS, tumor stages Serum markers: CEA, PSA, CA125, etc RR, TTP

Mechanistic (biomarkers):

Immunologic

Genetic

Proteomics-based

Molecular

Functional

Areas of consideration

- Genomic analysis of cancer *
- RT-PCR for molecular markers of cancer
- Serum/plasma and tumor proteomics*
- Immune polymorphisms*
- High content screening by flow and imaging cytometry
- Immunohistochemistry and tissue microarrays
- Assessment of immune infiltrates and tumor necrosis

Genomics and proteomics in cancer

- Emphasis on high throughput screening/profiling followed by identification
- Recommendations re sample acquisition and banking:
 - serial samples in order to get a dynamic view prospective collections linked to clinical trials standardized DNA, RNA amplification specimen processing/storage under GLP serum or plasma for proteomics??

RT-PCR for detection of circulating tumor cells (CTC)

- Objective is to get "molecular footprint" of cancer in blood, LN, BM
- Need to have a marker gene for each tumor type
- Need RT-PCR for sensitivity (1-10 CTC/10⁶ lymphocytes)
- Sample processing (whole blood vs. PBMC)
- Immunomagnetic bead enrichment in epithelial cells
- Emphasis on CTC validation vs. disease stages, recurrence, prognosis and survival to confirm clinical usefulness

High-content screening by flow or imaging cytometry to follow changes in immune cells

- Intimate and unique relationship of cancer and the host immune system
- How does tumor affect phenotype/ functions of immune cells?
- If tumor induces detectable alterations in phenotype/functions of immune cells, could we use these as biomarkers or surrogate endpoints?

What to measure, how and where?

- Tumor site vs. blood vs. LN
- Selection of the immune cell type which is altered in marker expression, signaling, migration, cytokine production, etc in a tumor-bearing host
- Choice of methods (screening vs. confirmatory) that are robust but simple to use in correlative studies to determine clinical usefulness of the selected cancer biomarker

Frequencies of CD8+tetramer+ T cells in PBMC and TIL of patients with head and neck cancer

gated on CD3 and CD8

p53 tetramer₁₄₉₋₁₅₉

p53 tetramer₂₆₄₋₂₇₂

Patient # 1: Tetramer frequency

CD8

CD8

Fas-L expression on the tumor and TIL apoptosis

- Fas-L expression was seen on all tumors
 - high 17/28
 - Low 11/28
- High expression of Fas-L was associated with
 - Apoptosis in TIL
 - Reduced ζ expression in TIL

Reichert et al, Clin. Cancer Res.8: 3137,2002

Apoptotic CD8+ T cells in the nest of lymphocytes at the tumor site

Red = alive CD8+ T cells

Blue = dying CD8+ T cells

Circulating CD3+Fas+Annexin+ cells in patients with HNC and controls

Isolation and characteristics of biologically-active MV in the sera of patients with HNC

Association of MV containing high, low or no FasL with disease in 27 SCCHN patients

Sera of patients with stage IV disease and + nodes contain MV with the high level of FasL

Annexin V binding to circulating CD8+ T lymphocytes

NC: normal controls

AD: patients with active disease

NED: patients with no evidence of disease

Clinical significance of CD8+ T cell apoptosis in patients with cancer?

- Discriminates patients with cancer from healthy controls
- Higher in patients with AD vs. those with NED, but not a significant discriminator
- Together with signaling defects (ζ chain) and CD95 expression on T cells, apoptosis correlated with the nodal involvement
- Potentially, could evolve into a marker of tumor aggressiveness or predictor of survival

Characteristics that are often altered in circulating T cells

- T-cell absolute numbers
- ■T-cell subset changes (naïve, memory)
- Expansion of Tregs (CD4+CD25high)
- Decreased ζ chain expression
- ■Increased apoptosis (CD95+, Annexin V+)
- Cytokine profiles
- **■** Memory T-cell functions
- Tumor-specific T-cell responses

Absolute # vs. % (means \pm /- SD)

/ too // vo. /v (modific i/ vo)						
bsolute #		CD3+	CD4+	CD8+		
N = 148	Patients	1081 +/- 601	670 +/- 412	392 +/- 269		

Normal

p value

Patients

Normal

p value

Controls

Controls

N = 58

Percentage

N = 148

N = 58

476 +/- 208

.0012

26 +/- 11

22 +/- 7

.0917

1512 +/- 494

< .0001

71 +/- 11

70 +/- 9

.6374

1005 +/- 360

< .0001

44 +/- 11

47 +/- 9

.1141

NED patients studied < 2 and >2 years after surgery

Decreased expression of ζ in Annexin+CD3+T cells in the peripheral circulation of patients with melanoma

Annexin

The % of cells positive for ζ vs. MFI for ζ in CD3+ T lymphocytes of the patients and normal controls

Characterization of Activation/Differentiation Status of Tetramer Stained Cells (MART 1)

Gated on tetramer MART 1+ CD8+ cells

Melanoma Patient

Expansion of CD8+GP100₂₀₉₋₂₁₇+- T cells and change of differentiation status in this subset seen in one melanoma patient treated with multi-epitope vaccine

Multi-color flow cytometry for phosphorylated STAT1 levels in activated immune cells

1. Surface staining with anti-CD3 Ab Sensitive, quantitative, fast, uses 2. Cell permeabilization few cells; measures early events 3. Intracytoplasmic staining with Ab to phosphorylated STAT1 **Activation** signal Laser P STAT1 STAT1 CD3 Laser T cell

Embarassing wealth of riches

Emphasis on Ag-specific responses and multicolor high content screening

Immunohistochemistry/Tissue microarrays Immune infiltrates into tumor

- IHC/TMA useful clinically in estimating prognosis or responses to therapy
- In research, IHC/TMA is considered crucial for the identification and mapping of new biomarkers
- Tissue quality and epitope preservation
- Prospective collection in clinical trials
- Advancements strategies: multicolor labeling, confocal imaging, morphometry
- Need for standardization
- Data mining

A retrospective study of tumor biopsies

- 132 primary OSCC (Follow up > 5 Years)
- Immunohistochemistry for detection of DC and the ζ chain
 - Antibodies to S100, p55-protein, CD3 and CD247
 - Morphometrical analysis (cell number/HPF)
- Parameters evaluated:
 - Tumor size, TNM staging categories, grading, survival, recurrence
- Statistical analysis:
 - Proportional hazards regression
 - Multivariate survival analysis
 - Kaplan-Meier survival estimation

Low Zeta

TIL in patients with HNC had variably but significantly decreased expression of TCR-associated ζ chain

\$100

DC Counts in tissue

Multivariate Analysis

(Kaplan-Meier, S100 und zeta)

Reichert et al, Cancer 91: 2136-2147, 2001

Multivariate Analysis

(Kaplan-Meier, S100 and TU-Stage)

Cytokine balance in disease

Therapeutic goal: shift the balance

TH1-dominant diseases Autoimmunity, GVHD

TH2-dominant diseases Allergy, HIV, Cancer

Multi-Analyte Soluble Bead Array Technology

MICROSPHERE COLOR INDENTIFIES ANALYTE

Analyte: body fluid

supernatant

Volume: 50 uL

How The Bio-Plex protein array system works

- Up to 100 microspheres are in a bead set. Each is color-coded and conjugated with a MAb specific for a unique protein analyte
- A flow-based instrument with 2 lasers and associated optics measures biochemical reactions that occur on the surface of the colored microspheres
- A high-speed digital signal processor efficiently manages the fluorescent output.

Cytokines Chemokines & More

Human

- TNFα, IFNγ, TGF- β 1, IL-1 Ra, IL-2 sR
- IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6,IL-7,IL-8, IL-10, IL-11, IL-12, IL-13, IL-15, IL-18
- G-CSF, M-CSF, GM-CSF, EGF, FGF-7, SCF, MIG, VEGF, HGF
- FLT-3, MCP-1, MIP-1α, MIP-1β, Rantes, IP-10, LIF

Inflammation Th-1/Th-2 Autoimmune Hematopoiesis

G-CSF
IL-6
IL-8
TNF-α

IFN-γ	IL-4
IL-5	TNF-α
IL-2	IL-7
IL-12	GM-CSF
IL-13	IL-18

IL-1b
IL-6
TNF-α
IL-12

G-CSF
IFN-γ
IL-1β
IL-6
GM-CSF

Conclusions: high throughput assay platforms are here!

- Technology is rapidly evolving: 17-color flow, cytometric bead arrays, confocal immuno-microscopy, microfluidics, immunoassay-based microarrays, immuno-PCR. All aimed at a high throughput, small sample volumes, rapid detection
- Profiling: changes in several biomarkers
- Potential future benefits: identification of individual markers or profiles of immunologic markers which will serve as surrogate endpoints useful in predicting survival, clinical responses to therapy or in immunodiagnosis (e.g.,screening general populations)
- Biomarker validation: many promising biomarkers but few formally validated; we needmore cost-effective validation, based on solid mechanistic insights and clinical correlative studies

Advantages of a central laboratory operated as a GLP facility

- QA and QC in place assuring quality and reliability of monitoring
- State-of-the-art technologies
- Assay development, standardization and validation
- Decreased cost of immune monitoring which is essential for biotherapy protocols
- Result interpretation in conjunction with statisticians aware of immune-based analyses
- Banking of samples which are accompanied by clinical outcome data for future research

Acknowledgements

- Immunologic Monitoring and Cellular Products Laboratory (IMCPL)
- Many posdoctoral fellows
- My clinical colleagues:

Jonas T. Johnson, MD

Robert L. Ferris, MD, PhD

John M. Kirkwood, MD

Michael T. Lotze, MD

Development timelines and cost

Table 1:	Typical vaccine development timeframes and costs				
Phase	Years to Market	Probability of reaching market (%)	Cost at Stage (\$m)		
Research	11	10	400		
Development (Preclinical)	8	20	350		
Phase I	6	20-30	280		
Phase II	5	30-50	200		
Phase III	3	50-90	10		
BLA Filed	1	90-95	5		
Approval	0	99	0		
Source: Jarvis (200	2)		DATAMONITOR		

Rational use of surrogate endpoints

- Mechanistic surrogate endpoint
- Disease-related surrogate endpoint
- Time-to-progression surrogate endpoint
- Overall survival endpoint