Immunosensitization of Melanoma Tumor to Adoptive Immunotherapy by a Histone Deacetylase Inhibitor

Dan Danh Vo Oct. 2006

Metastatic Melanoma Treatment

- Multiple forms of immunotherapy have been proposed over the years
 - Dendritic cell vaccine
 - IL2
 - Adoptive cell transfer therapy
- Patient response rate remained low, about (5%-15%)
- Tumor resistance possibly due to mechanisms of immune escape

Cancer Escape from Immunotherapy

1. Suboptimal antigen presentation: Tolerant self-antigens

2. Limited CD8+ CTL activation and expansion: CTLA4, PD-1

4. Immune suppressive tumor milieu: Treg, VEGF, IL-10, PgE2, TGF-β

3. Lack of antigen recognition: Low MHC, TAP deficient

Immune sensitization with HDACi

5. Insensitivity to proappoptotic signals

HDAC Inhibitors as Potential Immunostimulators

- Effects on tumor cells:
 - Increase death receptor expression.
 - Increase tumor antigen expression.
 - Increase expression of ligands for NK activating receptors.
- Effects on immune system cells:
 - Little cytotoxic effects on immune system cells.

The HDACi NVP-LAQ824

- LAQ824: A synthetic cinnamic acid HDACi.
- HDACi class: Hydroxamic acid group, which includes SAHA (Vorinostat, Zolinza), trichostatin A and pyroxamide.
- Pan-HDAC class I (HDAC1, 2, 3 and 8) and II (HDAC4, 5, 6, 7, 9, 10) inhibitor.

Atadja *et al.* Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. **Cancer Res** 2004.

Weisberg *et al*. Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells *in vitro* and *in vivo*. **Leukemia** 2004.

Hypothesis

Treatment of melanoma tumor with histone deacetylase inhibitor may cause tumor cells to be more sensitive to immunotherapy.

Pmel-1 Model of TCR Transgenic Cell Adoptive Transfer

Tumor Regression and Autoimmunity after Reversal of a Functionally Tolerant State of Self-reactive CD8+T Cells

Willem W. Overwijk, ^{1,2} Marc R. Theoret, ³ Steven E. Finkelstein, ¹ Deborah R. Surman, ¹ Laurina A. de Jong, ² Florry A. Vyth-Dreese, ² Trees A. Dellemijn, ² Paul A. Antony, ¹ Paul J. Spiess, ¹ Douglas C. Palmer, ¹ David M. Heimann, ¹ Christopher A. Klebanoff, ³ Zhiya Yu, ¹ Leroy N. Hwang, ¹ Lionel Feigenbaum, ⁴ Ada M. Kruisbeek, ² Steven A. Rosenberg, ¹ and Nicholas P. Restifo¹

The Journal of Experimental Medicine • Volume 198, Number 4, August 18, 2003 569–580 http://www.jem.org/cgi/doi/10.1084/jem.20030590

Experimental Outline

s.c. B16 melanoma treatment by adoptive transfer of pmel-1 splenocyte + HDACi results in initial tumor regression and slower growth rate

Tumor Growth Curves

s.c. B16 melanoma treatment by adoptive transfer of pmel-1 splenocyte + HDACi results in increase survival

Survival Curves

* P-value < .05

Pool from 3 independent experiments

HDACi causes increase in gp100+ CD8+ T cell proliferation and intratumoral infiltration in vivo

Pmel-1 Adoptive Transfer

Pmel-1 Adoptive Transfer + HDACi LAQ824

* P-value < .05

Immunohistochemical Staining CD8+ T Cell Intratumoral infiltration

Pmel-1 Adoptive Transfer

Pmel-1 Adoptive Transfer + HDACi

T Cell Activation by IFNy Staining

Day 28
Post
Adoptive

Transfer

Pmel-1 Adoptive Transfer

Pmel-1 Adoptive Transfer + HDACi

HDACi enhances pmel-1 cytotoxic activity in vitro

Immune Sensitization with HDACi

ACKNOWLEDGEMENT

Antoni Ribas, M.D.

James Economou, M.D. PhD

Robert Prins, PhD.

Timothy Donahue, M.D.

Jonathan Begley

Hermes Garban, M.D. PhD

Pilar de la Rocha

Lilah Morris, M.D.

Begona Comin-Anduix, PhD.

Samuel Olson

Joy Wiesnewski

Meng-Yin Yang, M.D.

Pejman Kharazi M.D.